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According to current estimates, the annual volume of crude oil

entering the ocean due to both anthropogenic activities and

naturally occurring seepages reaches approximately 8.3 million

metric tons. Huge discharges from accidents have caused

large-scale environmental disasters with extensive damage to

the marine ecosystem. The natural clean-up of petroleum spills

in marine environments is carried out primarily by naturally

occurring obligate hydrocarbonoclastic bacteria (OHCB). The

natural hosts of OHCB include a range of marine primary

producers, unicellular photosynthetic eukaryotes and

cyanobacteria, which have been documented as both,

suppliers of hydrocarbon-like compounds that fuel the ‘cryptic’

hydrocarbon cycle and as a source of isolation of new OHCB. A

very new body of evidence suggests that OHCB are not only

the active early stage colonizers of plastics and hence the

important component of the ocean’s ‘plastisphere’ but also

encode an array of enzymes experimentally proven to act on

petrochemical and bio-based polymers.
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Introduction and updated taxonomical
overview on marine OHCB
Some 15 years ago we reported on an ecophysiologically

unusual group of marine microorganisms, termed

‘obligate hydrocarbonoclastic (oil-degrading) bacteria

(OHCB) [1��]. One of their most distinct metabolic

peculiarities is their ability for utilizing almost exclusively

hydrocarbons as a sole source of energy and carbon (a

metabolic trait, called the ‘OHCB paradigm’ [1��]). Here,

we need to note that genetic loci of this physiological trait
www.sciencedirect.com 
are relatively easily transmissible between bacteria,

which is known for decades, for example, for alkane

hydroxylases/monooxygenases and P450 (CYP153) cyto-

chromes [2] or for a half-century, aromatic monooxy-

genases [3]. Importantly, the phylogenies of these

enzymes are uncoupled with the taxonomic placement

of producing organisms [4] therefore the term OHCB is

strain-specific and cannot be attributed to a higher taxon.

The ecological importance of OHCB in the biological

removal of petroleum hydrocarbons from various polluted

marine environments around the world has currently

been evidenced during last dramatic oil spill disasters,

such as aforementioned blowout of the Deepwater Hori-

zon (DWH) oil rig (see references below). Since the

discovery of the first obligate marine hydrocarbonoclastic

bacteria being as only members of the class Gammapro-
teobacteria, their taxonomic diversity has not much been

changed at the level of higher taxa. To date, of the eleven

recognized genera accommodating the OHCB species,

only the genus Planomicrobium includes the species pre-

viously known as Planococcus alkanoclasticus [5], order

Firmicutes within the class Bacilli, has been added to

the list. The rest of the well-established and novel

OHCBs are the members of the class Gammaproteobacteria
and are subdivided into four orders: Cellvibrionales (Porti-
coccus [6�]); Nevskiales (Algiphilus [7�] and Polycyclovorans
[8�]); Oceanospirillales (Alcanivorax [9], Neptunomonas [10],
Oleibacter [11], Oleiphilus [12], Oleispira [13] and Thalasso-
lituus [14]) and Thiothrichales (Cycloclasticus [15]).

Initially characterized as highly specialized hydrocarbo-

noclastic bacteria that degrade either aliphatic (Alcani-
vorax, Oleibacter, Oleiphilus, Oleispira, Thalassolituus) or

aromatic (Cycloclasticus, Neptunomonas) hydrocarbons

[1��,16–18], OHCB possess a higher metabolic versatility

than previously assumed. For example, in addition to the

type species of the genus, Alcanivorax borkumensis SK2T,

the genus Alcanivorax, currently includes 14 further spe-

cies with validly published names (https://lpsn.dsmz.de/

genus/alcanivorax), some of which exhibit genome sizes

much larger than that in the strain SK2T and, in turn,

utilize a larger range of growth substrates. More specifi-

cally, some Alcanivorax strains were found to be able to

degrade simple sugars such as arabinose and glucose [19]

and simple aromatic compounds, such as benzene, chlo-

robenzene, toluene [20] expanding the metabolic capa-

bility of this group of organisms, historically known as

narrow specialists in degradation of aliphatic, branched

hydrocarbons (including isoprenoids) and cycloalkanes
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[1��,9]. In concordance, some mussel and sponge sym-

bionts isolated from deep-sea gas and oil seeps [21] were

classified as the members of the genus Cycloclasticus, the

genus of well-established primarily degraders of (poly)

aromatic hydrocarbons in marine environments. They

were found to be similar to free-living Cycloclasticus that

bloomed during the DWH oil spill [22–27 and references

therein]. Both these groups of bacteria were capable of

degradation of short-chain alkanes ethane, propane and

butane [21,22], thus highlighting the expanded role of

these keystone species in the degradation of hydrocar-

bons released into marine environment. Of special atten-

tion are the recently uncovered novel OHCBs (Algiphilus
aromaticivorans, Polycyclovorans algicola, Porticoccus hydro-
carbonoclasticus) that represent novel genera and species

and that were isolated from eukaryotic phytoplankton

[6�,7�,8�]. All these isolates can use wide range of hydro-

carbons, from aliphatic (C10–C16) and branched (phytane,

pristane) to mono-aromatic (benzene, toluene, p-xylene)
and poly-aromatic hydrocarbons (naphthalene, anthra-

cene, phenanthrene, pyrene, fluorene) as sole carbon

sources for growth [17,18].

Marine OHCBs and the phycosphere
Marine OHCBs appear to be confined to the marine

environment, where they tend to be highly enriched in

petroleum-contaminated areas. However, in addition to

polluted sites, these organisms have been found in shal-

low, coastal and deep pristine areas around the world

including polar regions, where no apparent hydrocarbon

pollution has ever been recorded (Figure 1).

As highlighted in recent reviews, there are several biotic

as well as abiotic sources from which hydrocarbons, albeit

in small quantities, can enter the ocean and sustain the

emergence of OHCBs in both pristine and remote areas

[16,29]. One of the ubiquitous sources of biotic hydro-

carbons is chlorophyll A, the central pigment of photo-

synthesis, which is an aromatic porphyrin ring with side

chain of diterpene hydrocarbon (phytol) and is accounting

for 0.3%–5% of the dry weight of microalgal and cyano-

bacterial cell [26]. It should be noted that, as it has been

known for a long time, many microalgae and especially

cyanobacteria are capable of producing significant quan-

tities of various types of hydrocarbons, including long-

chain alkanes [30,31��,32�,33,34�], with estimated global

flux of de-novo produced hydrocarbons exceeding fossil

petroleum inputs into ocean by 100�500-fold [35��,36].
Therefore, it does not seem accidental that representa-

tives of Alcanivorax, Thalassospira, Oleibacter as well as

new genera and species of OHCBs (Polycyclovorans, Algi-
philus and P. hydrocarbonoclasticus) have been commonly

reported to be associated with many species of phyto-

plankton (diatoms, dinoflagellates, coccolithophores)

[16,29,37–41]. In this regard, the global distribution of

OHCBs in the oceans can be explained by their conquest

of still poorly studied and underexploited biotopes — the
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cell surface, or phycosphere [29], of marine phytoplank-

ton. The association of some OHCB taxa with these

primary producers raises important questions regarding

their ecology and their contribution to ocean wellness. Oil

pollution and biogenic production of hydrocarbons by

phytoplankton are corresponding aspects of the long-term

and short-term hydrocarbon cycles in the oceans, in which

OHCB communities, both phycosphere-associated and

free-living in seawater environments, play a significant

role.

Marine OHCBs and the plastisphere
In addition to being very important for the sustainability

of ocean ecosystems on a planetary scale in respect to the

hydrocarbon degradation, OHCB appear to play an addi-

tional and yet underestimated role as an important part of

the marine ‘plastisphere’, the newly recognized microbial

assemblages colonizing and modifying plastics released in

the ocean [42,43,44�,45–47]. Petroleum-derived synthetic

plastics, including low-density and high-density polyeth-

ylene (LDPE and HDPE), polystyrene (PS), polypropyl-

ene (PP), polyvinyl chloride (PVC), polyurethane (PUR),

and polyethylene terephthalate (PET), are currently

major pollutants of marine environments across the globe.

It has recently been estimated that between 4.8 and

12.7 million Metric Tons (MTs) of plastic have entered

the ocean annually over the past decade, largely due to

improper land-based waste management [48]. According

to the Plastics-Europe, the global yield of plastics reached

348 million MTs in 2018 [49]. Without major interven-

tions in waste generation and recycling, it was predicted

that by 2025, the cumulative amount of mismanaged

plastic wastes entering the ocean could reach almost

250 million MTs [48,50]. On the other hand, the produc-

tion of biodegradable bioplastics (BBPs) has been gradu-

ally increasing, as they are considered as promising alter-

natives to common petrochemistry-based polymers. In

2018, over 2 million MTs of BBPs was produced world-

wide with the major BBP types including poly(lactic acid)

(PLA, �25%), poly(butylene succinate) (PBS, �11%),

poly(butylene adipate terephthalate) (PBAT, �12%),

polyhydroxyalkanoates (PHA, �6%), and starch blends

(�44%) [49]. The number of scientific studies focused on

BBPs alone has been rapidly increasing with almost 18

000 publications in PubMed as of March 2021. However,

BBPs polymers are recalcitrant in the marine environ-

ment, as exemplified by Napper and Thompson [51] and

represent an emerging group of pollutants and, at the

same time, a new substratum for microbial colonization.

Recent studies have showed that the current mass of

ocean plastic is in the concentration range from between

0.1–1.0 particles m�3 in the water column, and from 103–

104 particles m�3 in sediments [52] and only 1% plastics

entering the marine environment are observed floating at

sea [44�,53]. This observation is quite surprising, consid-

ering the fact that over 65.5% of the world’s plastic is
www.sciencedirect.com
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Figure 1
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World map showing the distribution of the most prominent recognized genera that contain OHCB.

All available 16S rRNA gene sequences among GeneBank and SILVA databases with tagged coordinates have been used in the figure. When

coordinates were not available, the location was approximately estimated, whenever possible. Figure was developed under R programming

environment, using packages OpenStreetMap [28].
represented by lightweight polymers with a lower density

than seawater [54].

The interest to marine plastisphere has recently stimulated

numerous studies, which generated a breadth of data

[43,55�,56]. Similar to the biofouling that occurs with

any inert solid material entering the sea, the plastisphere

develops rapidly on the surface of plastic debris when

nutrients, carbon sources and energy are available. These

determinants, as well as salinity, temperature and solar

irradiation, are more likely to influence the development

of a particular plastisphere [44�], which may significantly

differ in microbial composition compared to free-living or

particle-associated microbial populations in the surround-

ing water [57]. In addition, the type, size and status of the

plastic itself (e.g. virgin or weathered) also affects the

formation of the plastisphere, composition of which is to

some extent characteristic for particular type of plastic

[58��,59,60].
www.sciencedirect.com 
Given that common plastics are derived from fossil fuels,

and especially, when oligomers and plastic additives

(plasticizers) are available as a source of carbon and

energy, one would expect that plastisphere should be

enriched with OHCBs. The high hydrophobicity of

petro-sourced polyolefins (PE, PP and PS) as well as

PET, PVC, and PUR creates a strong interface when

these materials are immersed in seawater, hindering

attachment of the majority of planktonic hydrophilic

microbiota. However, these surfaces can be quickly cov-

ered by marine microorganisms, possessing hydrophobic

outer membrane. Worth to mention, the regulation of the

hydrophobicity of outer membranes from neat and hydro-

philic to indented and hydrophobic has been documented

in a number of studies on marine OHCBs [9,61–64].

Following these expectations, we have attempted to

validate the role of OHCBs in light of their abilities to

both primary colonization (pioneering) and decomposi-

tion, at least partially, different types of marine plastic
Current Opinion in Biotechnology 2022, 73:337–345
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debris. A more targeted objective was to elucidate the

specific role of OHCBs in the enzymatic (hydrolytic or

redox) modification of the original polymer structure.

Marine OHCBs play important role in primo-
colonization of plastic
Although there are many studies on the microbial com-

position of plastic biofilms, few studies have been

devoted to detailed analysis of the successive phases of

plastisphere’s development [55�,56]. Like biofouling

[65,66], this process can be divided into three sequential

events: (i) ‘primo-colonization’ phase, which implies the

colonization of pioneer bacteria on the plastic surface,

which form the first layer of the original biofilm; (ii) a

‘growth phase’ that promotes irreversible attachment

through formation of extracellular matrix such as pili,

adhesion proteins and exopolymeric substrate matrix

(EPS) produced by both primary and secondary species;

(iii) the ‘maturation phase’ occurs through diverse, com-

petitive or synergistic interactions between cells with

further recruitment or loss of species [59,67]. The role

of OHCBs as key colonizers was first demonstrated by

investigating the different phases of the colonization of

polyolefin-based plastics, namely virgin low-density poly-

ethylene (LDPE), PE with prooxidant (OXO), and artifi-

cially aged OXO (AA-OXO) [59]. Succession of plasti-

sphere formed on plastic pieces was monitored for

45 days, with all three developmental phases observed.

Notably, OHCBs belonging to genera Alcanivorax, Olei-
philus and Thalassolituus were especially abundant in the

plastisphere during the primo-colonization phase and

tended to decrease thereafter [59]. It is very likely, that

LDPE attracts marine OHCBs independently of its sta-

tus, since primo-colonization by these organisms was also

observed on the weathered LDPE [68]. Similar to the

research’s data of Dussud et al. [59], the enrichment of a

prominent OHCB, Oleiphilus messinensis, on both non-

weathered and weathered LDPE only occurred at early

stages of colonization (i.e. after two days of incubation in

coastal marine water [Mallorca, Spain]; where they repre-

sented 3.7% and 5.8% of relative abundance, respectively,

versus 0.6% on glass controls) [69]. To some extent, a

similar observation was obtained during colonization

experiments conducted with virgin high-density polyeth-

ylene (HDPE) microbeads (1�4 mm; 0.96 g cm�3) [66].

Incubation of seawater with HDPE for 108 hours stimu-

lated the activity and enrichment of six OTUs, two of

which were closely related to OHCBs of the genera

Alcanivorax and Oleispira. The authors hypothesized that,

due to an increase in oxygen consumption during incu-

bation with HDPE as compared to control, these specific

organisms were uniquely adapted to use organic carbon

from virgin HDPE microbeads, likely plastic additives

and/or plasticizers, as carbon and energy sources, pointing

at their potential for the bioremediation of this type of

plastic [69]. The plastisphere succession studied during

colonization of three types of polyethylene terephthalate
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(virgin and weathered PET power [particles <300 mm]

and amorphous PET films [250 mm thickness]) for 42 days

led to slightly different results [59]. In more details,

members of Piscirickettsiaceae, the family accomodating

the genus Cycloclasticus, were found in significant numbers

(relative abundance 4.35%) during all phases of plasti-

sphere development on all type of plastic studied. Two

different amplified sequence variants (ASV), ASV8 and

ASV15 affiliated to Alcanivoraceae reached their maximum

abundance of 15% and 2.35%, respectively, but at later

stages of the plastisphere formation. Notably, while ASV8

was visualized only on virgin PET powder and amorphous

PET film, ASV15 was found to grow on all type of plastic

studied. The joint participation of Alcanivorax and Cyclo-
clasticus species in formation of a mature biofilm on the

surface of PET films was confirmed in a separated study

of Denaro et al. [70]. Interestingly, ATR-FTIR and SEM

analyses revealed that most significant alterations (forma-

tion of small cracks and cavities) of the surface of PET

films was mainly caused by the bacterial consortia

enriched on either tetradecane or diesel [70].

Plastic-degrading enzymes from OHCB
As indicated above, marine OHCBs are likely to survive

in pristine environments through the use of alkanes

secreted either by marine cyanobacteria [33,34�,35��] or

other eukaryotic primary producers [71,72]. Additionally,

they appear to have a strong hydrolytic capacity towards

aliphatic polyesters, both naturally occurring (e.g. poly-

hydroxyalkanoates [PHA]) and industrially produced (e.

g. polybutylene succinate [PBS], polycaprolactone

[PCL], polyethylene succinate [PES] and polylactic acid

[PLA]) [73,74,75�]. Nowadays these aliphatic polyesters,

referred above as BBPs, still account for a small fraction of

the global polymer market, but fortunately, consumer

demand for these ‘green’ alternatives to traditional

non-biodegradable petro-based materials is steadily grow-

ing [73,74]. Although the molecular mechanisms under-

lying the ability of OHCB strains to degrade such poly-

esters are currently unknown, genomes of OHCBs

encode a large array of enzyme candidates that potentially

can be active on BBPs. Indeed, numerous enzymes from

Alcanivorax, Oleispira, and Cycloclasticus spp., either cloned

from their genomes or recovered from metagenomic

DNA fragments in crude oil enrichments and attributed

to these organisms, were active on polyesters, including

PLA, PBS, PHB and PET oligomers [74,75�,76,77,78��,
79�,80,81�,82�]. In particular, Tchigvintsev et al. [79�] and

Hajighasemi et al. [80] reported three ester hydrolases

from the crude oil-seawater enrichments-derived meta-

genome, two of which were 100% identical to proteins

encoded by A. borkumensis SK2T genome, one of which,

ABO2449, was hydrolyzing poly-(DL-lactic acid) polyes-

ters. Notably, this activity of ABO2449 was found in both

emulsified and solid PLA, with the capacity to degrade

solid material being of high industrial interest. This

polyester hydrolase had a highest activity at 30–37�C
www.sciencedirect.com
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Figure 2
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The SILVA-based tree of most prominent OHCB in marine plastisphere possessing the potential to both colonize and degrade plastics.

Phylogenetic tree is based on an alignment of 1303 positions developed using Mafft [89] and trimmed using trimal [90]. From there, tree was

calculated following a GTR model by Maximum likelihood method with bootstrapping of 1000 replicates. Calculations and drawing of the figure

have been performed using R programming environment [91] using package ape [92]. Branches belonging to unspecific species are filled on grey

color. In case of evidences for the degradation of plastic polymers, these are shown next to each genus. Deinococcus radiodurans (AF289089)

has been used as outgroup.
and retained 32% of the maximum activity at 4�C, sug-

gesting that its cold-adapted nature [83]. Search for novel

and highly active polyesterases from marine metagen-

omes has led to the discovery of the esterase GEN0105,

which hydrolyzes PCL, PLA as well as bis(benzoylox-

yethyl)-terephthalate [81�]. Phylogenetic analysis showed

that this Family IV polyesterase, was closely related to the

alpha/beta fold hydrolases CUR46463 and

WP_055099617 from Alcanivorax xenomutans. The recent

study on Alcanivorax sp. 24 isolated from marine plastic

debris, which is able to degrade BBP polyesters (PBS,
www.sciencedirect.com 
PCL, PES and PHA), has also demonstrated its capacity

of bis(2-hydroxyethyl)-terephthalate (BHET) degrada-

tion. Further analysis of abundantly secreted

ALC24_4107 depolymerase revealed its promiscuous

hydrolytic activity towards aliphatic polyesters, which

makes it possible to biodegrade both natural and syn-

thetic polyester plastics of anthropogenic origin [75�].

As pointed out elsewhere, many polyesters of an unnatu-

ral origin exhibit a low bioavailability and are exposed to

the microorganisms in their natural environment for a
Current Opinion in Biotechnology 2022, 73:337–345
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limited period of time, which may be a reason why the

evolution of enzymatic pathways for plastic degradation

in situ is a relatively slow process [44�,84]. Accordingly,

the ubiquity of polyester-utilizing enzymes, for example,

homologs of PETase from Idionella [85��], in marine

bacteria and their communities, is correspondingly low,

as reflected by the sequencing data analysis [86�,87].
However, it is also known that some families of esterases

exhibit an enormous substrate promiscuity and some can

utilize, for example, 74 from 96 natural and synthetic ester

substrates tested [88��]. This also suggests that predic-

tions of enzymatic activities from genomic data may

overlook enzymes that are readily available in nature

and capable of polyester degradation and points at impor-

tance of functional enzyme discovery and experimental

activity validation, for example, proteins with domains of

unknown function (DUF) or ‘unknowns’.

Conclusion and outlook
The situation with the biodegradation of both natural and

synthetic polyesters looks more optimistic compared to

the bioconversion of non-hydrolysable polyolefins of pet-

rochemical origin, such as polyethylene, polypropylene

and polystyrene, which is hampered by the high redox

potential required to cleave carbon-carbon bonds. How-

ever, the ability of OHCB to form thick biofilms specifi-

cally on LDPE, and break down this petroleum-based

plastic has recently been demonstrated [60]. As men-

tioned above, bacteria of the family Alcanivoraxaceae
are also able to colonize the HDPE microbeads and,

probably, use organic carbon from this type of plastic

[69] (Figure 2).

Only four types of enzymes (manganese and soybean

peroxidases, laccase and alkane hydroxylases [monoox-

ygenases]) have exhibited the PE degradation activities

[93]. Since all OHCB possess a large repertoire of

enzymes of the latter type (AlkB, AlmA and P450 mono-

xygenases), their participation in degradation of low

molecular-weight PE in marine environment could be

foreseen. It is worth to mention that a recent quantum

mechanics study predicting the catalytic mechanism of

P450 monooxygenase suggested that oxygenase-induced

free radical transitions may cause the cleavage of the

carbon-carbon backbone of polyolefins (PE and PS)

[94].While these studies suggest a fundamental possibil-

ity that the biodegradation processes of PE or PS, which is

at least partially performed by OHCB, are feasible in

principle (Figure 2), more effort is needed to characterize

biochemical functions of corresponding enzyme candi-

dates to help predicting the plastics biodegradation path-

ways and enable the engineering of microbial catalysts for

plastics biodegradation or recycling [95�].

With the prevalence of plastic marine debris and the

continued growth in plastic production, the impact of

plastic on marine ecosystems is likely to intensify.
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Currently, the possibilities of microbial communities

developing on the surface of plastic (marine plastisphere)

to change the structure and depolymerize both natural

and synthetic polyesters are being actively studied. We

expect that OHCBs as part of the plastisphere — by

accelerating the characterization of their genetic circuits

and repertoires — to make a significant contribution to

the biodegradation of plastics in the marine ecosystems.
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72. Sorigué D, Légeret B, Cuiné S, Blangy S, Moulin S, Billon E,
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