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A B S T R A C T

A comparative study on mesh-based and mesh-less Computational Fluid Dynamics (CFD) approaches cou-
pled with the Discrete Element Method (DEM) is presented. As the mesh-based CFD approach a Finite
Volume Method (FVM) is used. A Smoothed Particle Hydrodynamics (SPH) method represents mesh-less
CFD. The unresolved fluid model is governed by the locally averaged Navier-Stokes equations. A newly
developed model for applying boundary conditions in the SPH is described and validation tests are per-
formed. With the help of the presented comparative tests, the similarities and differences of DEM-FVM and
DEM-SPH methods are discussed. Three test cases, comprised of a single solid particle sedimentation test,
flow through a porous block and sedimentation of a porous block, are performed using both methods. Drag
forces acting on solid particles highly depend on local fluid fractions. For comparative reasons, the size of
a cell in FVM is chosen such that fluid fractions match those computed in SPH. In general, DEM-FVM and
DEM-SPH methods exhibit good agreement with analytic reference results. Differences between DEM-SPH
and DEM-FVM approaches were found mostly due to differences in computed local fluid fractions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Coupled particle–fluid flow can be observed in almost all types
of particulate processes. Existing approaches to model particle–
fluid flow can be classified into two categories [1]: the discrete
approach at microscopic level (particles are resolved as separate
bodies) and the continuum approach at the macroscopic level (the
fluid phase as well as the particle phase are modeled as fully inter-
penetrating). In the continuum approach, macroscopic behavior is
governed by balance equations (e.g. for mass and momentum) closed
with constitutive relations together with initial and boundary condi-
tions [2]. This approach is preferred in process modeling and applied
research because of its computational efficiency. However, its effec-
tive use heavily depends on the constitutive relations and the model
that accounts for momentum exchange between particles and fluid
phase [3].

Discrete simulation approaches to model particle flow are based
on the analysis of the motion of individual particles, e.g. using the
Discrete Element Method (DEM), and thus inherit a reduced set of
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constitutive assumptions as compared to continuum approach. In
this approach, the fluid phase can be modeled at the sub-particle
level (Direct Numerical Simulation, DNS) such that momentum
exchange (fluid–particle, particle–particle) is resolved in detail [4],
or at the coarse-grained level (unresolved simulations using local
volume-average technique) used for larger scale models [5]. The
simulation at the sub-particle level can be used, e.g. for a detailed
analysis of interaction forces that act between the fluid phase and
suspended particles or for investigating the behavior of complex
shaped particles dispersed in the fluid. However, such simula-
tions are usually limited to a small number of particles [6,7]. The
unresolved approach is computationally more efficient and allows
simulation of much larger particle systems than DNS, while preserv-
ing discrete flow characteristics of the particles.

In most unresolved simulations mesh-based Computational Fluid
Dynamics (CFD) methods are used. A Finite Volume Method (FVM)
for the gas phase based on the locally averaged Navier-Stokes
equations and DEM for the solid phase was first reported by Tsuji
et al. [8]. Since then, a lot of investigations for the improvement
of various aspects of this coupling were conducted [3,5]. A wide
range of applications such as fluidized beds [9], cyclones [10],
screening [11], pipeline flow [12], particle coating processes [13],
pneumatic particle transport [14] and others have been discussed in
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the scientific literature. It could be concluded that DEM techniques
coupled with mesh-based methods are widely recognized as state of
the art in current research.

A different situation prevails when mesh-less methods are
applied for the fluid phase. Coupling of DEM with the mesh-less
Smoothed Particle Hydrodynamics (SPH) method was investigated
only in a couple of contributions. Potapov et al. [15], Qiu [16], and
Canelas et al. [17] presented a two-way coupled DEM-SPH method.
Because a DNS approach was used, the method is suitable for mod-
eling of few solid particles only. Li et al. [18] developed a SPH model
for pore fluid flows through solid particle packings, however, the
model does not allow for an independent movement of the fluid
and solid particles. Jiang et al. [19] used SPH for modeling fluid flow
in isotropic porous media, however, the solid particles represent-
ing the porous media remained static throughout the simulations.
The analyses of slurry transport in SAG mills and large screens were
presented in Refs.[20] and [21], where fluid flow and solid particle
motion were computed using SPH and DEM, respectively. However,
the model represented a one-way coupling between DEM and SPH
only. Recently, a two-way coupling scheme between DEM and SPH
has been derived by Gao and Herbst [22], Sun et al. [23] and Robinson
et al. [24]. The application to slurry flow, abrasive wear and mag-
netorheological fluids were demonstrated by Cleary [25], Beck &
Eberhard [26] and Lagger et al. [27] respectively. These first results
look promising, however more investigations are required to clarify
various aspects of DEM-SPH coupling.

In the current investigation a comparison between DEM coupled
with FVM (mesh-based) and DEM coupled with SPH (mesh-less) is
presented. Some of the effects influencing the motion of suspended
solid particles are highlighted and the similarities/differences of solid
particle motion in both methods are discussed. Sections 2, 3 and
4 describe the governing equations of the fluid and solid phases
and the interaction between them. A newly developed model for
boundary conditions in the SPH is described and validation tests are
performed in Section 5. Three test cases, comprised of a single particle
sedimentation test, flow through a porous block and sedimentation
of a porous block, are performed using DEM-FVM and DEM-SPH
methods whose results are discussed in Sections 6, 7 and 8.

2. Governing equations of the solid phase

The solid phase is modeled using DEM. In this method the motion
of each individual solid particle Pi is described by Newton’s second
law:

mi
dui

dt
= Fc

i + Fg
i + Fint

i , (1)

where ui denotes the solid particle velocity, Fc
i denotes the total

contact force, Fg
i denotes the gravity force and Fint

i denotes the inter-
action force between solid and fluid phase. The calculation of Fint

i is
described later in Section 4. The total contact force for solid particle
Pi is obtained from the sum of contact forces acting between Pi and
its neighboring solid particles Pj :

Fc
i =

n∑
j=1

Fc
ij , (2)

where n denotes the number of contacts. The contact force between
solid particles is calculated as a sum of normal and tangential force
components. A linear spring damper model is used for the nor-
mal component of the contact force. A linear spring limited by the
Coulomb condition is used for the tangential force. A more detailed
description of the used DEM model can be found in Refs.[14,28].

Discontinuities, such as an instant application of external forces,
lead to spurious high-frequency oscillations in weakly-compressible
SPH methods. To reduce this artifact Adami et al. [29] proposed to
increase the external force gradually. In our case, the proposed tech-
nique is used for gradual increase of the gravity force acting on a solid
particle:

F g
i = Vig[qf + (qs − qf )n(t)] (3)

where Vi denotes the volume of the solid particle, g denotes gravita-
tional acceleration, qf denotes fluid density, qs denotes the density of
the solid particle and n is a damping factor [29]:

n(t) = 0.5
[

sin
(
p

(
−0.5 +

t
tdamp

))
+ 1

]
, t ≤ tdamp. (4)

where tdamp is the predefined damping time during which the force
gradually increased until the nominal value is reached.

3. Governing equations of the fluid phase

3.1. Mesh-based model

The local averaging technique [30] for the Navier-Stokes
equations is applied in this research. This technique is used widely
for modeling fluid–particle interaction when unresolved particle–
fluid flow is considered [3,5]. The fluid phase is described in an
Eulerian framework where continuity and momentum equations are
given as

∂ q̄f

∂t
+ ∇ • (q̄f uf ) = 0, (5)

∂ q̄f uf

∂t
+ ∇ • (q̄f uf ⊗ uf ) = −e∇p + ∇ • (et) − fint

m + q̄f g, (6)

where q̄f = eqf denotes the superficial (locally averaged) density of
the fluid, e denotes the local mean fluid volume fraction, uf denotes
fluid velocity, p denotes pressure, t denotes the viscous stress ten-
sor and f int

m denotes the particle–fluid interaction force per unit of
volume. The interaction force is further introduced in Section 4. The
required porosity e in each fluid cell is calculated as follows. Each
fluid cell is divided into a number of smaller sub-cells, called a trans-
fer grid in Ref. [31]. During the calculation the occupation of each
sub-cell is checked. If the sub-cell center is inside of a solid particle,
the volume of the sub-cell is marked. From the number of not marked
sub-cells the approximate part of volume not occupied by solid par-
ticles is calculated for each fluid cell. This part of volume is used in
Eq. (8) as the porosity of the cell. In the current study each fluid cell
was divided into 40 × 40 × 40 sub-cells. The presented momentum
equation Eq. (8) corresponds to the model A as described by Feng and
Yu [32].

For the mesh-based model a Finite Volume Method (FVM) as
implemented in the commercial software ANSYS Fluent is applied.
The porous media single phase model is used where the fluid is
assumed as incompressible. In the performed tests neither the solid
particles nor the fluid are heated. Ansys ICEM meshing software is
used for the generation of meshes. The coupled analysis at each time
step consists of DEM part and FVM part. The updated positions of
solid particles from DEM are used for the calculation of the poros-
ity and the interaction force. For the transfer of information about
fluid velocities from the FVM and to assign the calculated porosity as
well as the interaction force User Defined Functions of Fluent are uti-
lized. More details about the used DEM-FVM coupling algorithm can
be found in Ref. [31].
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3.2. Mesh-less model

The Smoothed Particle Hydrodynamics (SPH) method is used as a
mesh-less CFD method as an alternative approach to be coupled to
the DEM. SPH is a mesh-less Lagrangian technique first introduced by
Gingold and Monaghan [33] and Lucy [34] to solve problems of gas
dynamics in astrophysics. Since then it has also found a widespread
use in other areas of science and engineering. Its mesh-less charac-
ter makes the method very flexible and enables the simulations of
physical problems that might be difficult to capture by conventional
mesh-based methods. The principal idea of SPH is to treat hydro-
dynamics in a completely mesh-free fashion, in terms of a set of
sampling particles [35]. SPH particles represent a finite, lumped mass
of the discretized continuum and carry information about all phys-
ical variables evaluated at their positions. Hydrodynamic equations
for motion are then derived for these particles thus yielding a quite
simple formulation of fluid dynamics. Mass and linear momentum
are simultaneously conserved. Function values and their derivatives
at a specific SPH particle are interpolated from function values at
surrounding SPH particles using the interpolating (kernel) function
and its derivatives. Because of the mesh-free nature of SPH, it can
easily deal with problems characterized by large displacements of
the fluid–structure interface, by a rapidly moving fluid free-surface
and by complicated geometric settings. SPH has been applied across
a broad range of engineering disciplines to compute various envi-
ronmental or industrial fluid flows, for example, in marine [36],
extrusion [37], geophysical [38] and coastal [39] engineering.

In a Lagrangian framework, the continuity equation and the
momentum equation following Ref. [24] are used for the fluid phase:

Dq̄f

Dt
+ ∇ • (q̄f uf ) = 0, (7)

Dq̄f uf

Dt
= −∇p + ∇ • (et) − f int + q̄f g, (8)

Eq. (8) corresponds to model B in Refs. [3,32], in which is assumed
that the pressure gradient is applied to the fluid phase only.

In the SPH method, the fluid phase is represented by separate par-
ticles. These particles carry variables such as velocity, pressure, den-
sity and mass. No connectivity is modeled between fluid particles,
however, the integral representation of the function is approximated
by summing up the values of the neighboring points using smooth
kernel functions.

As commonly used in the weakly compressible approach to
simulate incompressible fluids, an equation of state is introduced to
estimate the pressure from the density field [35,40]:

p =
q0c 2

c

[(
q̄f

eq0

)c

− 1

]
+ B, (9)

where q0 denotes the initial density of the fluid phase and c denotes
the speed of sound. To keep the density to vary by at most 1% with
respect to q0, c = 10umax is usually used [40,41], where umax denotes
the maximum fluid velocity magnitude. The coefficient c = 7 is used
in our simulations. B denotes a background pressure, which is set to
zero in case of free surface problems, while B > 0 is used to avoid
the tensile instability in other cases [29,40,42].

The kernel function is defined so that its value monotonously
decreases as the distance between SPH particles increases. It has a
compact support, the radius of which is defined by the smoothing
length. The Gaussian [43], quadratic [44], cubic [45,46] and quintic

spline [47] as well as other functions can be used for this purpose. In
the current research, a cubic spline [48] is used as kernel function:

W(r, h) = aD

⎧⎪⎪⎨
⎪⎪⎩

1 − 3
2 q2 + 3

4 q3, 0 ≤ q < 1,
1
4 (2 − q)3, 1 ≤ q < 2,

0, q ≥ 2,

(10)

where q = r/h, aD is 10/(7ph2) in case of 2D, while 1/(ph3) in the
3D case. The smoothing length, which defines the influence area of
the kernel, is denoted h. The distance between two fluid particles Pa

and Pb is denoted rab =‖ ra − rb ‖.
The continuity Eq. (7) discretized using SPH and evaluated for a

fluid particle Pa takes the form

Dq̄a

Dt
=

∑
b

mbuab • ∇aWab, (11)

where indexes a and b indicate variables evaluated at positions ra

and rb of fluid particles Pa and Pb, respectively. mb denotes the mass
of fluid particle Pb. uab = ua − ub is the relative velocity between
fluid particles Pa and Pb. ∇aWab = ∇aW(rab, h) is the gradient of the
kernel function. The summation is performed over all neighboring
fluid particles (these are with index b) of fluid particle Pa.

The momentum conservation Eq. (8) in SPH takes the form [41]:

Dua

Dt
= −

∑
b

mb

(
pa

q̄2
a

+
pb

q̄2
b

)
∇aWab + g

+
∑

b

mb
m(q̄a + q̄b)

q̄aq̄b
•

rab∇aWab

|rab|2 + d2
uab +

f int
a

ma
, (12)

where rab = ra − rb. The third term on the right-hand side in
Eq. (12) is a viscous term introduced by Morris [41], where m denotes
the kinematic viscosity. d is a small, positive number used to keep
the denominator non-zero and usually set to 0.1h. In case of solid
particles approaching the fluid particle, the resulting porosity e is
decreasing and this is the cause of increased pressure in the fluid cal-
culated by Eq. (11). Increased pressure will cause increased forces
between pairs of fluid particles (see the first right term in Eq. (12)). In
this way, the fluid particles are pushed away form the approaching
solid particles.

f int
a in Eq. (12) represents the solid–fluid interaction force acting

on the fluid particle Pa due to momentum exchange with solid parti-
cles. The force fint

a is calculated as the sum over solid particles in the
domain of the fluid particle Pa:

f int
a =

∑
i

fint
ai , (13)

f int
ai = − VaWai∑

b
VbWbi

F int
i . (14)

where Va denotes the volume of the fluid particle Pa calculated as
Va = ma/q̄a, while F int

i is the same interaction force as in Eq. (1).
The fluid volume fraction ea at the position of the fluid particle Pa

is calculated from the volumes of all solid particles Pi which are in
the smoothing domain of the fluid particle Pa:

ea = 1 −
∑

i

ViWai , (15)

where Vi denotes the volume of the solid particle Pi, while Wai =
W(‖ ra − ri ‖, h) is evaluated using Eq. (10).
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Special care should be taken during the calculation of the fluid
fraction for the fluid particles near boundaries. If the boundary inter-
sects the kernel domain, a part of the kernel domain is truncated by
the domain boundary. This implies truncation errors in the computa-
tion of e. To account for kernel domain truncation, the fluid fraction
near boundaries is calculated by:

ea = 1 −
∑

i
ViWai

Ca
(16)

where Ca is a correction factor for Pa as is described by Sun et al. [23].
It is an integral over the part of the kernel function which is inside
of the problem domain. This modification normalizes the interpola-
tion scheme in the vicinity of boundaries to reduce truncation errors.
Originally, the Ca factor was proposed in Ref. [49] for the developed
boundary model and was later modified in Ref. [23]. Ca for the cubic
spline kernel is calculated from:

Ca =

⎧⎪⎪⎨
⎪⎪⎩

− 1
60

(
3x6 − 9x5 + 20x3 − 42x − 30

)
, 0 < x ≤ 1,

1
60

(
x6 − 9x5 + 30x4 − 40x3 + 48x + 28

)
, 1 < x ≤ 2,

1, x > 2,

(17)

where x = y/h, y denotes the normal distance between the rigid
boundary and the position of a fluid particle and h is the smoothing
length as it is used in the kernel function Eq. (10).

4. Fluid–solid interaction

The interaction force F int
i acting on solid particle Pi can con-

sist from several individual solid–fluid interaction forces [3]. In the
present study, the drag force F D

i and the pressure gradient force F∇p
i

are considered as the dominant interaction forces:

F int
i = F D

i + F∇p
i . (18)

Various models are available for the calculation of the drag force.
In the current work, the correlation proposed by Di Felice [50], which
is well-anticipated in literature, is used:

FD
i =

1
8

Cdqfpd2
i (uf ,i − vi)|uf ,i − vi|e2−w

i , (19)

where ei, di, uf,i, and vi denote fluid fraction at solid particle Pi

according to Eq. (15) or Eq. (16) near boundaries, the solid particle
diameter, the fluid velocity and the solid particle velocity, respec-
tively. ei is obtained from interpolating fluid fractions of surrounding
fluid particles Pa:

ei =

∑
a
eaVaWai∑

a
VaWai

(20)

The drag coefficient Cd for spherical particles is given by:

Cd =

(
0.63 +

4.8√
Rei

)2

. (21)

where Rei = ei|uf,i − vi|di/m denotes the solid particle Reynolds
number and m denotes kinematic fluid viscosity. w is calculated as a
function of the Reynolds number by

w = 3.7 − 0.65 exp(−(1.5 − log10(Rei))2/2). (22)

Provided that the pressure gradient ∇p arises only due to inter-
action between solid particles and fluid, FD

i can be combined with
F∇p

i [51]. The latter results in:

Fint
i =

FD
i

e
− Viqf g. (23)

Fint
i is used in Eq. (1) and Eq. (14). For the mesh-based model, i.e.

Eq. (6), on the other hand, the force f int
m acting on cell c is calculated

from the drag forces FD
ci which are acting in the cell:

f int
k =

∑
i

FD
ci/Vc , (24)

where Vc denotes the volume of the cell.

5. Boundary conditions in SPH model

5.1. No-slip and no-penetration boundary model

The importance of accurately enforcing no-slip and no-
penetration boundary conditions (BC) was discussed in Refs.
[29,42,52]. Not only do BC models affect the accuracy of flow fields,
but they also contribute to overall numerical stability [42]. Another
aspect of boundary models in the context of the DEM-SPH method
concerns the convenience of use as pointed out in Ref. [23]. In par-
ticular, it would be convenient if the geometry of the container, as
defined for use in the DEM, could be directly used in SPH without
further effort. To satisfy the above requirements a new variant of
the BC model is proposed here. The new BC model allows container
geometries to be adopted directly from the DEM model. In compar-
ison to the BC model proposed in Ref. [23], the BC model presented
here ensures no-slip conditions along the container walls.

A ghost-fluid technique is used to enforce no-slip and no-
penetration boundary conditions. The ghost-fluid technique is based
on the idea of modeling container walls using virtual fluid parti-
cles (ghost particles) positioned in the vicinity of container walls.
Every time step these ghost particles are instantaneously generated
for every fluid particle interacting with the boundary (see Fig. 1).
In contrast to the classical ghost particle approach [40] where fluid
particle is mirrored on the opposite side of the boundary line, in
the proposed model, several ghost particles are generated instan-
taneously to ensure that the support of the kernel interpolants is
fully contained within the fluid phase. A similar approach was used
by Marrone et al. [42], however, rather than instantaneously gener-
ating ghost particles, they used pre-generated ghost particles. The
instantaneous generation of ghost particles is what distinguishes the
proposed BC model from other BC models proposed earlier.

As already pointed out earlier [29,52,53], a special treatment of
ghost particle velocities is needed to enforce no-slip boundaries in

Fig. 1. The calculation scheme of tangential boundary velocities.
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Fig. 2. Initial fluid particle setup for Poiseuille flow.

a correct way. Following Ref. [42], two velocity fields are employed.
For the calculation of the viscous term in Eq. (12), the following ghost
particle velocities are used:

⎧⎨
⎩u(a)

ak
• t =

[
(ua − ubc) • (1 + dk

da
)
]

• t,

u(a)
ak

• n = (ua − ubc) • n,
(25)

where u(a)
ak denotes the velocity of the k-th ghost particle relative to

fluid particle a, ubc denotes the prescribed velocity of the boundary,
t denotes a vector tangent to the boundary and n is a vector normal
to the boundary. Furthermore, dk and da denote the normal distances
of ghost particle Pk and fluid particle Pa from the container wall. For
the case of free-slip u(a)

ak
• t = 0 can be used. For the calculation of

velocity difference in the continuity equation Eq. (11), on the other
hand, the following ghost particle velocities are used:

⎧⎨
⎩u(a)

ak
• t = 0,

u(a)
ak

• n =
[
(ua − ubc) • (1 + dk

da
)
]

• n.
(26)

Implementing two different ghost velocity fields avoids inconsis-
tencies and loss of accuracy as discussed by De Laffe et al. [54]. In
particular, using Eq. (26) in the continuity equation accounts for no-
penetration whereas Eq. (25) in the momentum equation accounts
for no-slip. Eitzlmayr et al. [53] have mentioned the problems of rep-
resenting complex shaped geometries by discrete fluid particles and
suggest a way to avoid the generation of ghost particles by use of fit-
ted polynomial functions. In the presented BC model pre-generation
of ghost particles was avoided by use of instantaneously generated
ghost particles. In contrast to the use of polynomial functions that
represent boundary shapes, the proposed BC model allows the use of
arbitrary kernel functions without the need to adjust the BC model.

5.2. Validation tests

Two 2D tests, namely the Poiseuille flow and the flow through a
periodic lattice of cylinders, are performed to validate the proposed
BC model. Such or similar tests are used by many researchers to
validate no-slip BCs in the SPH.

5.2.1. Poiseuille flow
The test case with two infinite parallel walls and fluid in between

(Poiseuille flow) is used to verify the described boundary condi-
tions. The fluid particles are initially at rest and driven by a body

Fig. 3. Poiseuille flow.

force applied in the horizontal direction. The 2D flow with 19 fluid
particles in horizontal direction and 25 fluid particles in vertical
direction is considered (Fig. 2). The simulation parameters as used
by Eitzlmayr et al. [53] are used: the smoothing length is h = 0.24
mm, initial distance between fluid particles is 0.2 mm, the fluid den-
sity is q = 1000kg/m3, the fluid viscosity is l = 0.5Pa • s, the speed
of sound (see. Eq. (9)) is c = 10m/s, the body force is 10m/s2. The
analytical solution for Poiseuille flow can be found in Refs. [41,53].

The velocity profiles for the analytical and numerical SPH solu-
tions for 1.2, 6 and 30 ms after applying the body force are presented
in Fig. 3. In general, there is good agreement between the obtained
results. The SPH velocities are slightly larger, than the analytical, but
results correspond to the obtained values in Ref. [41] and in Ref. [53].
The velocities are approaching zero values near to the boundaries,
which indicates that the no-slip condition is enforced correctly.

5.2.2. Flow through a periodic lattice of cylinders
Another test case used for validation of the presented boundary

conditions is the 2D flow through a square lattice of cylinders. A
single cylinder with an associated volume within the lattice is con-
sidered in the SPH (Fig. 4). As in the previous test case, the flow
is driven by a body force. The periodic boundaries are applied in x
and y directions, while the no-slip boundary conditions presented in
Section 5.1 are applied for the cylinder. Although the used boundary

Fig. 4. Fluid particle positions at t=4000s colored according to velocity magnitudes.
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Fig. 5. Velocity profile along cut lines shown in Fig. 4 for flow through a periodic
lattice of cylinders.

model is easy to adapt to cylindrical surfaces (simply, ghost particles
could be generated below the cylinder surface following its curva-
ture), such adaptation was not used here. The ghost particles were
generated assuming a plain surface of the boundary. This simplifi-
cation is reasonable in this case, because the diameter of the used
cylinder is much larger than the distance between the SPH particles.

The parameters for the test case are the same as used by Morris
et al. [41]: the size of the domain is 0.1 ×0.1 m, the initial distance
between the fluid particles is 2 mm, the viscosity is l = 10−3Pa • s,
the smoothing length is h = 2.4 mm, the fluid density is qf =
1000kg/m3, the speed of sound is c = 5.77 • 10−4m/s, the body force
is 1.5 • 10−7m/s2, the diameter of the cylinder is 4 cm. The back-
ground pressure B = 10−5 Pa (see Eq. (9)) is used to avoid the
negative pressure in the downstream flow and the formation of an
unphysical void formation as a consequence. Initially the velocities of
the fluid particles are zero. The fluid particles start to move due to the
initiation of the body force. The velocities increase until steady state
is reached. Simulations using a cubic spline (Eq. (10)) and a quintic
spline kernel [41] are performed. The fluid particles at the final time
t = 4000s colored by the velocities are shown in Fig. 4. The velocity
profiles along the cut lines 1 and 2 from SPH (Fig. 4) together with
the results from the steady incompressible viscous flow using a Finite
Element Method (FEM) [41] are presented in Fig. 5.

The results using both kernels are close to the results obtained by
FEM. The velocities with the quintic spline kernel are a little bit closer
to the results obtained by FEM. This corresponds to the discussion

Fig. 6. Solid particle inside the container filled with SPH particles.

presented in Ref. [41]. However because the quintic spline is compu-
tationally more expensive, the simpler cubic spline kernel is further
used in the current research.

6. Solid particle sedimentation test

To examine the performance of DEM-SPH and DEM-FVM meth-
ods, three numerical tests, starting from the settlement of one solid
particle, are performed. In this single particle sedimentation test a
solid spherical particle is placed in a 3D container with fluid and is
realized to fall down under the influence of the gravity force. The
density qf = 1000kg/m3 and the viscosity l = 0.001Pa • s are used
for the fluid in both SPH and FVM methods. These physical fluid
parameters are used in all following test cases. The density of the
material of the solid particle is set to qs = 120kg/m3. Three solid
particle diameters d = 2, 4, 8 mm are considered in the tests. SPH
particles with a smoothing length h = 8 mm and an initial dis-
tance �x = 5.33 mm between them are generated in the container
above the bottom wall. This gives h/�x = 1.5, which ensures that
enough neighbors are around every fluid particle [35]. In total, 8000
SPH particles are used. As an initial preparatory step, the fluid par-
ticles are allowed to settle in the container. Solid and fluid particle
positions after this preparatory step are shown in Fig. 6. The bound-
ary conditions described in Section 5.1 are used for the walls of the
container.

To be able to compare the DEM-SPH and DEM-FVM, both methods
should be expected to give the same (similar) results. The drag force
acting onto the solid particles highly depends on the fluid fraction
(see Eq. (19)). Therefore, the size of the cell in the FVM is chosen to
give the same fluid fraction as in the SPH. With the current DEM-
SPH setup and when the solid particle with d = 8 mm is used, the
calculated fluid fraction during the simulation is approximately e =
0.935. This gives us the cell size 0.0143 × 0.0143 × 0.0202, which
is used for the DEM-FVM. As a result, the container is divided into
7 × 7 × 6 cells.

The velocities of the settling solid particles are shown in Fig. 7.
The curves present results obtained using a one-way coupling and
a two-way (full) coupling between DEM and SPH or FVM. In the
one-way coupling scheme, the solid particles are experiencing the
presence of the fluid, however the fluid does not “feel” the presence
of the solid particles, i.e. the fluid fraction of fluid remains one and
the source term on the fluid is always zero in the FVM (see Eq. 6) and
in the SPH (see Eq. 8). Together with the numerical results, analytical
terminal velocities of the solid particles are presented in the figure as

Fig. 7. Solid particle sedimentation velocity.
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dashed vertical lines. The analytical terminal velocity was calculated
from the sum of the gravity, drag and buoyancy forces, which should
be equal to zero when terminal velocity is reached:

mg + FD − Vqf g = 0, (27)

where V is the volume of the solid particle. The drag force FD was cal-
culated using the same drag force correlation (Eq. (19)) as was used
in the numerical methods, using the same constant fluid fraction
e = 0.999 for d = 2 mm, e = 0.992 for d = 4 mm, e = 0.935 for
d = 8 mm as was obtained from the DEM-SPH and the fluid velocity
uf equal to zero. With this assumptions for the drag force, the ana-
lytical solution corresponds to the one-way coupling scheme in the
numerical tests. Horizontal lines in Fig. 7 show the cell boundaries in
the FVM.

In the tests with the solid particle d = 2 mm there are almost
no difference between all 5 results (analytical, DEM-SPH one-way,
DEM-SPH two-way, DEM-FVM one-way, DEM-FVM two-way). In the
tests with the solid particle of d = 4 mm very small differences
can be recognized. However the tests with a solid particle of d = 8
mm show differences between the calculated solid particle veloci-
ties. The obtained velocity in the DEM-SPH one-way coupling fully
overlaps the line of the analytical terminal velocity. The DEM-FVM
one-way result shows a bit higher solid particle settlement veloc-
ity. It is related to the way the fluid fraction is calculated on the
solid particle. When the solid particle crosses a cell boundary, a part
of the particle volume is assigned to one cell, while another part is
assigned to another cell and, accordingly, the resultant fluid fractions
are higher. Only when the particle is fully enclosed in one cell, the
calculated fluid fraction corresponds to the value used in the ana-
lytical solution. This change of the fluid fraction is reflected in the
waving character of DEM-FVM curve. There is interesting difference
obtained between the results using two-way coupling. Because of the
source term applied to the fluid in the FVM, the velocity vector in the
cell, where the solid particle is, is pointing downwards. This results
in a bit smaller velocity difference between the velocity of the parti-
cle and the fluid. Consequently, a smaller drag force is obtained and
the particle moves a bit more quickly.

Fig. 8. Container with the porous block. The cross section of the cells is colored by the
fluid fraction as obtained in the DEM-FVM.

Fig. 9. Fluid flow velocities.

The opposite picture is obtained with the DEM-SPH. Here some
fluid particles near the center of the solid particle move in the oppo-
site direction then the solid particle and, therefore, a bit bigger
velocity difference is obtained. Consequently, the bigger drag force is
obtained and the solid particle moves slower. This result corresponds
to the results reported in Ref. [24]. The authors in Ref. [24] considered
settlement of a single solid particle using different fluid resolution
ranging h/d from 1.5 to 6. In comparison with 2 ≤ h/d ≤ 6, the lower
settlement velocity was obtained in the case of h/d = 1.5. Because
in our test case h/d = 8 mm/8 mm= 1, the same trend should be
expected.

It should be noted, that strictly speaking the application of the
local averaging technique (Eqs. (5)–(8)) for the prediction of the
movement of a single solid particle is incorrect. However we used it
as a test case to clarify possible differences between the DEM-SPH
and DEM-FVM methods. The test cases shown in the next sections
deal with the assembly of solid particles, i.e. the case the averaging
technique is developed for.

7. Flow through a porous block

A numerical analysis of fluid penetrating through a fixed porous
block is performed. The porous block is constructed from solid par-
ticles fixed in space. The diameter of the solid particles is d = 4
mm, while the distance between the solid particle centers is 5.33
mm. This gives the fluid fraction inside of the block as e = 0.779.
21 • 21 • 10 solid particles are used to resemble the porous block.
21,000 SPH particles with a smoothing length of h = 8 mm and
an initial distance �x = 5.33 mm between them are generated in
the container. The container is divided into 7 • 7 • 16 cells for analy-
sis with the DEM-FVM. The block is placed in a container with fluid
(see Fig. 8) and remains fixed during the simulation. The density
qf = 1000kg/m3 and the viscosity l = 0.001Pa • s are used for the
fluid. Free slip wall boundary conditions are used for sides of the con-
tainer. Periodic boundaries are applied on the top and the bottom of
the domain. At first, an initialization simulation is performed to reach
an equilibrium state. Then, the gravity 9.81m/s2 is applied to the
fluid and simulations using both numerical methods (DEM-SPH and
DEM-FVM) are performed. The fluid, which has zero velocity initially,
accelerates until a constant flow velocity is reached.

Velocities obtained by the simulations together with analytically
calculated velocities are shown in Fig. 9. Fluid velocities shown in
Fig. 9 from FVM and SPH results were taken as average velocities on a
cross plane x′O′y′ shown in Fig. 8. Analytical velocities are calculated
from Eq. (27), however, this time, the mass m is the total mass of the
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Fig. 10. Fluid fraction inside the porous block in the DEM-SPH and the DEM-FVM.

fluid, while FD and V are the total drag force and the total volume of
the solid particles respectively.

While the same porous block was used in both numerical meth-
ods, the resulting constant velocity for the DEM-FVM is 0.953m/s,
but for the DEM-SPH it is 0.896m/s. Both results are higher than the
analytically calculated value of 0.856m/s for e = 0.779. The differ-
ence is the result of the different fluid fractions at the positions of
the solid particles. As it is shown in Fig. 10, solid particle layers of
the block have a bit different fluid fractions. These differences are
causing the different drag forces calculated in two methods, because
the calculated drag force highly depends on the fluid fraction (see
Eq. (19)). The fluid velocity (Fig. 9) obtained with the DEM-FVM
fully overlaps the corresponding analytical line. However small dif-
ferences can be seen when comparing the DEM-SPH result with
the corresponding analytical line. This difference (no more than 1%)
could be caused by the influence of the walls. When the fluid fraction
is less than one (situation inside of the porous block), the truncated
kernels are taken into account by the use of the C factor in Eq. (16).
Still, by the use of the C factor the influence of the walls is esti-
mated only approximately. The inaccuracy made by the use of Eq.
(16) decrease with the use of smaller solid particles. Additionally,
the use of the C factor can not take into account the situation on
the corners where two walls are intersecting. The result of this is a
bit smaller fluid fraction near the sides of the container where the
porous block is present.

8. Sedimentation of a porous block

8.1. Initialization of the specimen

Sedimentation of a constant porosity block under gravity is
considered in this test. Both DEM-SPH and DEM-FVM simulations
are performed. As in the previous test case, the porous block is
formed from 21 • 21 • 10 = 4410 solid particles with a density of
1200kg/m3, which have the diameter d = 0.004m, and are placed
with 0.00533m distance between their centers. The same size of con-
tainer and the same number of cells for DEM-FVM and the same
number of fluid particles for DEM-SPH as in the previous test case
are used. However, in this test a wall is defined at the bottom, while
periodic boundaries are used on the sides of the container. Initially
the generated porous block is placed 20 cm above the bottom wall
(Fig. 11). After generating the solid particles and the fluid cells, a
steady state simulation is performed to reach an equilibrium state
by DEM-FVM. In the DEM-SPH, after the generation of solid particles,
the fluid particles are generated in the container. During the gener-
ation, the distances between the fluid particles are adjusted to take

Fig. 11. Container with the porous block (DEM-SPH) after initialization.

into account the lower fluid fraction inside the porous block. Then
initial simulation of the system is performed by keeping the porous
block unmoved. At first stage, some movement of the fluid parti-
cles are produced, because the fluid particles try to find equilibrium
positions. As a result, the variation of the fluid pressure is produced.
However after about 1 s, the almost constant value of the pressure is
reached. It should be noted, that some level of chaotic movement of
the fluid particles remains. However such movements are common
for SPH [55].

After the initial simulation the resultant density distribution
inside of the container simulated by the DEM-SPH is shown in Fig. 12.
The superficial density q̄f inside of the porous block is reduced
because solid particles occupy volume and the fluid particles are
forced to moved out from the block. The value of the superficial den-
sity is equal to q̄f = qf • e = 1000 • 0.779 = 779 kg/m3 inside the
center of the block. However near to the top and bottom of the block

Fig. 12. Fluid density distribution at the end of the initialization procedure in the
DEM-SPH.
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Fig. 13. Pressure in the container at the end of the initialization procedure in the
DEM-SPH.

the transition domain can be seen which reflects the smooth change
of the fluid fraction near the boundaries of the block. If the superfi-
cial density is divided by the fluid fraction, the physical fluid density
is obtained (second line in Fig. 12). In Fig. 12 some increase of the cal-
culated fluid density with the depth can be seen. It is because of the
weakly compressible approach used in the SPH (see Eq. (9)).

The calculated pressure in the container (Fig. 13) increases from
zero at the free surface to 2780 Pa near the bottom (line “block
in fluid”). Additionally to the case of the container with the porous
block inside (line “block in fluid”) there was performed a simulation
with the fluid only (line “only fluid”). As is expected the pressure is
higher in case when the block is submerged in the fluid, because of
the increased fluid level. However the expected difference is 115 Pa,
while the calculated difference at the bottom is equal to 82 Pa only.
At higher positions this difference is higher. An analytically obtained
hydrostatic line (p = qfgDz) is almost overlapped by the “only fluid”
line, while the “block in fluid” line keeps above however more or less
parallel to it. Two horizontal lines in Fig. 13 show the top and bottom
positions of the block. Bigger discrepancies from the hydrostatic line
can be seen near the free surface, because of the truncated support
domain of the kernel near the free surface [56].

8.2. Sedimentation step

After initialization of the specimen, the solid particles are released
and they start to settle down by the influence of the gravity force.
To reduce pseudo-sound waves in the fluid domain, the gravity force
Fg on the solid particles is increased gradually by using Eqs. (3)–(4)
with tdamp = 0.5s. Relative movements of the solid particles in the
block are not allowed, therefore the particles settle down as a one
solid block.

The result of the simulation of the block sedimentation by means
of a settlement velocity is presented in Fig. 14. Together with the
DEM-SPH and DEM-FVM results, analytically calculated curves are
drawn. The analytical curves are obtained by numerically integrating
the solid particle acceleration from the out-of-balance force Foob over
the time:

Foob = F g + FD + F b. (28)

The FD is calculated using Eq. (19) with (uf,i −vi) = −vi/e, because all
the fluid in the container is forced to penetrate through the porous
block during its settlement. The first analytical curve is obtained by
assuming a constant fluid fraction e = 0.779 inside the whole block,

Fig. 14. Settling velocity of the porous block.

while the second analytical curve is obtained using the fluid fraction
taken from the DEM-SPH, which has different values in solid particle
layers near to the block boundaries. In the DEM-SPH simulation the
block reaches its maximum velocity after about 0.5 s (the same time
as tdamp, z = 0.175m) and moves down until it reaches the bottom
wall at t = 3.14s. While the applied damping technique reduced the
pseudo-sound waves, some waving can be seen on the block velocity
curve. The influence of the bottom boundary is reflected in the last
part of the curve (z = 0 − 0.015m).

There is a difference about 2% between the settlement velocity
obtained from DEM-SPH simulation and the analytical curve even
when the fluid fractions from DEM-SPH are used to obtain veloc-
ity. This difference is caused by inhomogeneous distribution of the
velocities at the positions of solid particles (see Fig. 15). For example
at t = 2.3s the drag force calculated using one velocity for the
whole porous block is equal about 0.251 N, while the drag force cal-
culated in DEM-SPH (where the drag force is calculated using the
individual velocity values at each position of the solid particle) is
Fd

DEM−SPH = 0.262 N. For the whole porous block (Fg +Fb) = 0.263N.
The small difference between Fd

DEM−SPH and (Fg + Fb) equal to 0.001
N at this time step causes the small increase of velocity in the next
time step.

The velocity curve of the DEM-FVM simulation shows that the
block does not settle at a constant velocity, however the velocity is
changing periodically. This change of the velocity is related to the
change of the fluid fraction on the positions of the solid particles.
The variation of the fluid fraction in the layers of the solid particles
is presented in Fig. 16. When the block moves down, the calculated

Fig. 15. Fluid velocities at positions of the solid particles at time t = 2.3s, |uf|max =
0.0435m/s (DEM-SPH).
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Fig. 16. The variation of the fluid fraction during the sedimentation of the porous
block in the DEM-FVM.

fluid fraction is changing because in the used algorithm for calcu-
lating the fluid fraction, when a solid particle crosses the boundary
between two cells, its volume is divided proportionally. The fluid
fraction varies a lot especially at the upper and bottom layers of the
block (0.778–0.929), while in the middle the variation is between
0.776 and 0.788 only. The result of such a change of the fluid frac-
tion is that a different total drag force is calculated. The change of the
calculated fluid fraction could be reduced, if finer cells for the FVM
would be used. In contrast to DEM-FVM, in DEM-SPH the fluid frac-
tion at the positions of the solid particles is varying much less during
the settlement of the block. Therefore the block in DEM-SPH moves
down at a more constant velocity.

The pressures in the fluid below (level 1, Fig. 11) and above (level
2, Fig. 11) the porous block during the settlement are presented in
Fig. 17. The analytical vertical line shows expected difference as is
calculated from

Dp = qf |g|Dz +

∣∣Fg
∣∣ − ∣∣Fb

∣∣
As

,

where the first term on the right side is the pressure difference due
to difference in the hydrostatic pressure at level 1 and level 2. The
second term reflects the pressure difference due to the drag force,
which, in the case when the terminal velocity is reached, is equal
to the sum of the gravity and buoyancy forces. As is the area of the
cross section of the container. The “diff. DEM-SPH” curve shows the
difference between pressures at level 1 and level 2. Quite big fluctu-
ations can be seen in the pressures. However the difference between
the expected analytical value and the averaged numerical value is
about 5 % only. In contrast to DEM-SPH results, there are no fluctu-
ations in DEM-FVM results. The resulting pressure difference (“diff.
DEM-FVM” curve in Fig. 17) overlaps the analytical calculated line.
It seems that the SPH method has difficulties to handle the pressure
field in this case. The fluctuating pressure problem in the SPH is also
reported by other researchers [57,58].

9. Conclusions

In the present work, a comparative study on mesh-based and
mesh-less coupled CFD-DEM methods to model particle-laden flow
was performed. The governing equations describing the coupling of
the Discrete Element Method with the Smoothed Particle Hydro-
dynamics method were presented in detail. Comparative DEM-FVM
and DEM-SPH tests were performed and similarities and differences

Fig. 17. Pressures during the sedimentation of the block.

were discussed. Based on this work, the following conclusions can be
drawn:

• The proposed new model to account for boundary conditions
in the DEM-SPH approach was demonstrated to produce accu-
rate results in the presented verification tests. They proved
to be convenient and stable in the context of our DEM-SPH
simulations.

• In general, results obtained using DEM-FVM and DEM-
SPH approaches agreed well with analytic reference results.
Numerical difference between DEM-SPH and DEM-FVM were
found mostly due to difference in computed fluid fractions that
result in different drag forces.

• In some cases, e.g. in the porous block settlement test, the
DEM-FVM shows an unsmooth settlement velocity curve. This
is caused by the constantly changing fluid fraction when solid
particles are mapped from one cell to another. The settlement
curve obtained with DEM-SPH remains smooth.

• Due to weak compressibility of the present SPH scheme, pres-
sure fluctuations are observed during the settlement of the
porous block in the DEM-SPH approach. This corresponds to
the results reported by Robinson et al. [24], where an addi-
tional artificial viscosity was used to dampen these fluctua-
tions. However, even without the artificial viscosity the mean
values of fluid pressures reproduce analytical reference results
with satisfactory accuracy.
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