
New Journal and we have not received input yet 20 (2021) 100181

Available online 19 August 2021
2468-1113/© 2021 Elsevier B.V. All rights reserved.

QSTR and interspecies-QSTR modelling for aquatic toxicity data gap filling 
of cationic polymers☆ 

Pathan Mohsin Khan a, Hans Sanderson b, Kunal Roy c,* 

a National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata 700054, India 
b Aarhus University, Department of Environmental Science, 4000 Roskilde, Denmark 
c Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India   

A R T I C L E  I N F O   

Keywords: 
QSTR 
i-QSTR 
Cationic polymers 
PLS 
Fish toxicity 
Algae toxicity 
D. magna toxicity 

A B S T R A C T   

Polymers are extensively used in several fields representing a growing multi-billion dollar industry covering 
several thousands of materials and billions of kilos used globally every year. The widespread use of cationic 
polymers may significantly discharge such compounds into the aquatic environment, which may cause potential 
toxic effects on aquatic organisms. The amount of publicly available, high-quality environmental toxicity data for 
industrial polymers such as cationic polyquaterniums is low. We have developed here individual quantitative 
structure–toxicity relationship (QSTR) models for toxicity prediction against fish and algae. These models against 
fish and algae showed optimistic statistical quality in terms of several internal and external quality and validation 
metrics such as determination coefficient R2 (0.703 and 0.676), cross-validated leave-one-out Q2 (0.638 and 
0.516) and predictive R2

pred or Q2
ext (0.776 and 0.703) for fish (Ntrain = 72, Ntest = 23) and algae (Ntrain = 40, 

Ntest = 14) toxicity datasets, respectively. The study revealed that higher charge density increases the toxicity 
against both the response endpoints. However, a higher percentage of oligomers with a molecular mass of lower 
than 1000 Daltons results in a decreased toxicity towards both the studied endpoints. Similarly, primary amines 
in the molecular building block result in a reduction in the toxicity against the algal species. However, acceptable 
individual QSTR models against D. magna could not be generated with the limited feature information obtained 
from the United States Environmental Protection Agency and additional data provided by Environmental Climate 
Change Canada (ECCC). Therefore, we have also proposed interspecies quantitative structure–toxicity relation
ship (i-QSTR) models among three species (D. magna, fish and algae species) to bridge the toxicity data gap for 
cationic polymers. The mechanistic interpretation of i-QSTR models revealed several important characteristic 
features of polymers along with the experimental response of one species which are also helpful for toxicity 
prediction of other species, ultimately helping to reduce the experimental testing for toxicity prediction. Finally, 
the proposed QSTR and i-QSTR models can be helpful to compute the toxicity of polymers in the early stages of 
screening for regulatory purposes and data gap filling for new or untested polymers falling within the applica
bility domain of the models.   

1. Introduction 

Polymers are diverse classes of synthetic organic substances that are 
made up of a sequence of one or more types of small molecules 
(monomers) linked together by covalent bonds [1–3]. They are also 
known as macromolecules because they are made up of repeating sub
units with MWs ranging from 100s to several 1000s or even millions of 
Daltons. Polymers are extensively used in several fields such as pack
aging, electrical and electronic equipment, transportation, controlled 

drug delivery systems, medical implants, agricultural products, personal 
care products, household cleaning products such as conditioners or 
softeners and as flocculants in drinking water treatment plants [4,5]. 
They represent a growing multi-billion dollar industry covering several 
1000s of materials and billions of kilos used globally every year. How
ever, polymers have until recently been considered of low environ
mental concern due to their high molecular weight, lower 
bioavailability, and inadequate reaction potential under different 
ecological circumstances. Therefore, they have been subjected to 
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exemptions or reduced regulatory requirements in many jurisdictions 
worldwide [6–8]. However, polymers are now drawing the attention of 
national and international chemical regulatory agencies regarding their 
environmental safety, and these exemptions are expected to be revised 
in the coming years in several geographies; for example, as per Article 
138(2) of the REACH Regulation [9], the exemption of polymers from 
REACH registration is under consideration, with the goals of analyzing 
the human health and environmental risk of polymers in comparison to 
other organic chemicals and assessing the need for the registration of 
specific types of polymers. The EU has prepared three reports to address 
the upper mentioned objective; the first report [10] compares REACH’s 
registration requirements to those of other regulations. The second study 
[7] proposes a method for identifying polymers of low concern (PLC) 
based on the criteria such as low content of low MW material, restricted 
presence of reactive functional groups, and nil or low cationic charge 
density [11,12], which is comparable to the US EPA’s approach. Other 
countries have introduced similar PLC requirements [7,8,10,13]. The 
European Commission’s third report [14] summarised the criteria for 
identifying polymers that may need to be registered under REACH in the 
future and adapted the information requirements for these polymers. 
The ECETOC Polymers Task Force is also looking at polymers, having 
presented a conceptual framework for polymer risk assessment [8] and 
looked into the applicability of chemical-analytical methodologies, 
standardized test procedures, and prediction models [13]. 

Polymers are macromolecules with various physicochemical prop
erties that are important in determining how the polymer will behave in 
the environment or environmental fate of polymers. These properties 
include a monomeric composition of polymers, size of polymers, mo
lecular weight distribution, an average molecular weight of polymeric 
compounds, oligomer content of the polymer with molecular mass less 
than 1000 and 500 Daltons, the equivalent weight of reactive functional 
groups present in the polymers, cationic charge density, type of cation, 
the position of cation in backbone/pendant chain, and water solubility 
etc.[12] However, such basic information about polymers was missing 
or not reported in the ways that are useful for risk assessment of poly
meric compounds in the registration reports[12]. Similarly, the amount 
of publicly available, high-quality environmental toxicity data on in
dustrial polymers such as cationic polyquaterniums is minimal. In the 
present study, we have employed the Quantitative Structure-Toxicity 
relationship (QSTR) modelling for the aquatic toxicity data gap filling 
of polymers. To predict activity, toxicity, and property of organic 
chemicals, the Quantitative Structure-Activity Relationship (QSAR) 
methodology is regarded as one of the most commonly utilized and 
widely acknowledged computational approaches by numerous chemical 
legislations and organizations [15,16]. The experimental toxicity data of 
a series of cationic polymers against different aquatic species for indi
vidual QSTR and interspecies-Quantitative Structure-Activity Relation
ship (i-QSTR) modelling were obtained from the USEPA 1996 report 
[12] and Environment and Climate Change Canada (ECCC) [17]. 

Only a few reports have been published so far using the QSAR 
technique to estimate cationic polymer toxicity. The USEPA proposed 
univariate QSTR models for predicting acute and chronic toxicity of 
cationic polymers against fish, D. magna, and algal species in the 1990s. 
The final models were based on the cationic charge density (it is 
generally based on the percent of amines nitrogen (% A-N) because more 
than 99.9% of all polymers that have been submitted under section 5 of 
TSCA have had their cationic group based on the nitrogen) of polymers, 
implying that the cationic charge density of polymeric compounds 
governs polymer toxicity [12]. More recently, Nolte et al. [18] used a 
diverse set of polymers (n = 43) to create QSARs for algal toxicity. They 
proposed four separate QSTR models, each using a different set of 
polymer classes (cationic, non-ionic, and anionic polymers) and one 
model from a combined dataset of different polymer classes. The QSTR 
model for cationic polymer was developed using the dataset of only nine 
compounds using the multiple linear regression techniques. The final 
model for predicting algal toxicity of cationic polymers was based on a 

single descriptor, i.e., #CN (number of carbon-nitrogen bonds of the 
nitrogen in the central amine (or amidine) functional group) that was 
normalized for polymer charge density. 

In the current study, we have first proposed individual QSTR models 
for algae and fish species, followed by interspecies-QSTR models among 
D. magna, fish and algae species. The following are the primary objec
tives of the current work:  

1. To develop and evaluate individual QSTR models against fish and 
algae species to deal with the polymer toxicity data gap.  

2. Similarly, novel robust interspecies-QSTR models among D. magna, 
fish, and algae are developed and proposed. This will aid in extrap
olating toxicity data from one species to another. These methods will 
aid in reducing experimental efforts as well as animal testing.  

3. The proposed individual QSTR and interspecies-QSTR models 
allowed us to identify multiple polymers’ structural features, which 
have significant effects on toxicity prediction. 

4. The proposed models will be used to assess the risks of new or un
tested polymeric compounds within the applicability domain of 
stated models.  

5. This toxicity prediction strategy can also help to reduce experiment 
time, expense, and animal testing by several folds. 

2. Materials and methods 

2.1. Dataset 

The experimental toxicity data of a series of cationic polymers were 
obtained from the USEPA 1997 report [12] and Environment and 
Climate Change Canada [17] against different aquatic species. The 
USEPA 1997 report comprises toxicity data of 73 polymers against three 
different species D. magna, fish and green algae. The final dataset was 
reduced to D. magna (n = 20), fish (n = 38) and green algae (n = 17) 
toxicity data after a data pre-treatment based on the available infor
mation regarding different property and response endpoints. Similarly, 
Environment and Climate Change Canada’s additional data comprises 
toxicity data of 242 polymers against different species. The final dataset 
comprises D. magna (n = 78), fish (O. mykiss, n = 47 and P. promelas, n =
29) and algae (P. subcapitata, n = 36 and S. capricornutm, n = 25) toxicity 
data after data pre-treatment based on the available information 
regarding different property and response endpoints. To obtain the final 
QSTR models, we have combined the data points obtained from two 
sources. The final datasets for fish and algae toxicity modelling were 
composed of 112 and 78 polymers, respectively. All the toxicity values 
were expressed in 1/EC50 (mg/L). In the composite dataset, many 
polymers had multiple toxicity data against the same taxonomic group. 
To consider a specific polymer once in the modelling study for a 
particular endpoint, we have averaged the specific polymer toxicity data 
against the same species. For in silico modelling purposes, the EC50 
values were transformed into the molar scale (dividing the EC50 value 
with the reported average molecular weight (MWn) of the individual 
polymers) followed by conversion to the negative logarithmic form, i.e., 
pEC50 (EC50 in molar). Note that pEC50 values are directly proportional 
to the toxicity. 

2.2. Descriptor calculation 

The dataset employed in the present study were blinded in terms of 
the names as well as explicit chemical structures of the polymers, 
although the number of polymers with corresponding toxicity against 
different species (fish, D. magna and algae) and six other associated 
properties (Charge Density (a-N %), avMw, %MW less than 1000 Da, % 
MW less than 500 Da, Cation position and Cation type (i.e. primary (1◦), 
secondary (2◦), tertiary (3◦) and quaternary (4◦) cation) have been re
ported [12]. The initial idea was to use these properties as descriptors for 
the modelling. However, the number of these properties is limited. 
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Hence, we defined the cation type into four descriptors: primary, sec
ondary, tertiary, and quaternary, which will help explore the cation 
types in the polymers. Similarly, we defined another indicator variable, 
cation position. In the case of cation position properties, based on the 
available position for at least one occurrence, we have defined nine 
descriptors, named as cation positions 0, 1, 2, 3, 4, 5, 7, 8 and 11. 
Therefore, an entire set of 17 descriptors was prepared for modelling. 
Fig. 1 represents the general overview of different calculated descriptors 
by considering three cationic polymers. 

2.3. Dataset division 

To strategically validate each QSTR model, we divided each fish and 
algae dataset separately into two subsets (training and test sets) using 
three separate data division approaches employing a dataset division 
software that can be downloaded for free from https://dtclab.webs. 
com/software-tools [19–21]. The compounds in the training set were 

used to specifically train the model, while the compounds in the test set 
were used to validate the model. For fish and algae QSTR modelling, the 
training sets comprise 72 (Ntrain = 72) and 40 polymers (Ntrain = 40) and 
the validation sets comprise 23 (Ntest = 23) and 14 polymers (Ntest = 14), 
respectively. On the other hand, for i-QSTR modelling, the dataset was 
distributed into two subsets, i.e., training and test sets (only in the case 
of i-QSTR modelling between D. magna and fish species). 

2.4. Model building and validation 

This research aims to develop robust and accurate QSTR models for 
the prediction of toxicity of cationic polymers against fish and algae 
species (defined endpoint as per OECD Principle 1). Only the training set 
compounds were used in the model building process, while the test set 
compounds were only used to validate the best model that has been 
chosen. Since the current study involves a small number of features, we 
ran genetic algorithm-multiple linear regression (GA-MLR) repeatedly 

Fig. 1. General representation of different descriptors by considering three cationic polymers i.e. A] Polypropylenimine, B] PQ6 and C] Poly(2-(dimethylamino)ethyl 
methacrylate). 

Fig. 2. Schematic overview of the detailed methodology used in the present study.  
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to find the best MLR model [22]. Finally, the descriptors selected in the 
best MLR models were subjected to the partial least squares (PLS) 
regression technique [23] to derive more robust models at various latent 
variables (unambiguous algorithm as per OECD Prnciple 2). The final 
best models were submitted to a comprehensive validation procedure 
following OECD principle 4, which states that “appropriate metrics of 
goodness-of-fit, robustness, and predictability” must be established for 
any QSTR model. These parameters may be calculated based on a variety 
of internal and external validation metrics. The internal quality/vali
dation metrics include determination coefficient, Q2

LOO (Q2 leave one 
out), and rm

2 metrics for the training set [16,24,25]. However, any 
model’s prediction ability depended on its performance in predictions 
for external compounds, i.e. external set predictive variance (R2

pred) 
[16,23,24]. We have also checked the mean absolute error of the test set 
(MAE100% test), and subsequently, we have also determined the rm

2 

metric for the test set [26]. Fig. 2 depicts a schematic overview of the 
detailed methodology used in the present study. 

The finally selected best QSTR models were further subjected to Y- 
randomization using SIMCA-P [27] to decide whether the final models 
were obtained by chance or not. The study was carried out by creating 
100 new models for an original model by shuffling the values of the Y- 
variable while keeping the values of the X-variable unchanged [28]. 
Similarly, we established the applicability domain of the final models in 
the chemical space (OECD Principle 3) using the DModX approach [28] 
available in the SIMCA-P software at 99% confidence level, which is 
helpful to determine whether the predictions obtained from a particular 
model are reliable or not. 

2.5. Interspecies-QSTR modelling (i-QSTR) 

Interspecies modelling is a chemometric data modelling technique in 
which experimental response data from one species is used to extrapo
late the response data from another species. The basic interspecies 
model provides a statistical relationship between the responses of two 
species. An i-QSTR model consists of an experimental response value of a 
specific species, which serves as a predictor variable (independent var
iable) along with other numerical descriptors (structural as well as 
physicochemical properties) to predict the response value for another 
species, which is referred to as interspecies quantitative structure- 
toxicity relationships model (interspecies-QSTR) [29,30]. This 
approach will be helpful to fill toxicity data gaps for multiple species as 
well as for some kind of preliminary understanding of the chemical’s 
mechanism of action (MoA) to a particular species [31–34]. Simulta
neously, i-QSTR models significantly decrease the expense and duration 
of laboratory studies and animal testing. Fig. 3 depicts the simple ar
chitecture and advantages of i-QSTR models among D. magna, fish and 
algae species. 

Although i-QSTR modelling for small molecule toxicity has been 
reported in various publications, we have only reviewed here a few 

studies that have studied the interspecies relationship of chemical eco
toxicity. For example, Hao et al. [35] reported an individual QSTR 
models for acute oral toxicity of nitroaromatic chemicals to rats and i- 
QSTR models between rat and mouse. The individual QSTR modelling 
was performed using the toxicity data of 128 nitroaromatic compounds 
against rats, and model training was accomplished by using the 101 
nitroaromatic compounds, while 27 molecules were used for model 
validation. They have stated that the van der Waals surface area, the 
presence of C-F at topological distance 6, high frequency of C-N at to
pological distance nine primarily contribute to the acute toxicity of 
NACs against rats. In contrast, the heteroatom content and the presence 
of N-O at a topological distance of ten mainly result in the decrease of 
toxicity. On the other hand, they have developed the rat-mouse and 
mouse-rat interspecies i-QSTR models using toxicity datasets of 100 and 
102 nitroaromatic compounds, respectively; both the i-QSTR models 
were based on single descriptors, i.e. experimental toxicity value of 
nitroaromatic compounds against rat and mouse vice versa. Finally, they 
have used the rat-mouse and mouse-rat interspecies QSTR (i-QSTR) 
models employed in toxicity prediction for true external sets consisting 
of 67 and 265 compounds, respectively. Similarly, Guohui Sun et al. 
[36] reported an individual QSTR model for acute oral toxicity of 
polycyclic aromatic hydrocarbons (PAHs) to rats, as well as the i-QSTR 
models between rat and mouse. Individual QSTR modelling was per
formed using the toxicity data of 276 PAHs against rats, and the best 
model obtained from the training set of 102 PAHs compounds and 
subsequently validated using the test set of 20 PAHs compounds was 
based on the eight molecular descriptors. They have stated that the 
toxicity of PAHs increases with an increase in lipophilicity and decrease 
with a reduction in the polarity of compounds. Simultaneously, they 
have developed rat-mouse and mouse-rat i-QSTR models using the 
training set of 44 PAHs, and final models were validated using the test 
set of 14 PAHs compounds. Lastly, they have used the rat-mouse and 
mouse-rat interspecies i-QSTR models for toxicity prediction of true 
external sets consisting of 61 and 68 compounds, respectively. Kar et al. 
[37] have published a detailed overview on the idea and application of 
interspecies quantitative structure toxicity relationship modelling (i- 
QSTR modelling). It is stated that the i-QSTR technique is beneficial 
when toxicity data for one species is missing since it is possible to 
extrapolate toxicity from the toxicity endpoint of another species. This 
approach can also overcome the cost of many toxicity tests, improve 
understanding of the mechanism of toxic action (MOA) of chemicals for 
different organisms and endpoints, and fill data gaps where toxicity 
value for a particular chemical compound is absent for a specific 
endpoint. For more details about the i-QSTR modelling, please refer to 
an article published by Kar et al. [37]. 

Fig. 3. Basic architecture and advantages of i-QSTR models among D. magna, fish and algae species.  
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3. QSTR modelling of the combined data of ECCC and USEPA 

3.1. QSTR modelling for toxicity against combined fish species 

In this case, we have tried to develop a QSTR model using the 
combined dataset of three different fish species (O. mykiss and 
P. promelas toxicity data obtained from the ECCC dataset and fish data 
extracted from USEPA dataset). The initial dataset comprising 112 
compounds with toxicity against three different fish species was 
employed for QSTR modelling. The initial results indicate that the 
seventeen compounds (polymer id: 48, 53, 55, 56, 64, 83, 216, 217, 218, 
238, 35A, 36A, 38A, 39A, 62A, 73A and 75A) show high prediction 
residuals, influencing the final model quality. Therefore, the identified 
seventeen compounds were removed from the initial dataset, and the 
rest of the compounds were used for modelling. The final dataset of 95 
compounds was divided into two different subsets (i.e., training and test 
sets) employing dataset division software tool freely available from https 
://dtclab.webs.com/software-tools. The training set (Ntrain = 72 poly
mers) was explicitly used for model building, while the test set was used 
for rigorous validation purpose (Ntest = 23 polymers). The best model 
was obtained from the splitted data obtained from the Euclidean dis
tance [20] dataset division approach. Models were obtained employing 
the GA-MLR technique followed by PLS regression [23], leading to a 
final model with three latent variables. The selected model was robust 
and acceptable as per the internationally acceptable internal and 
external validation metrics, as shown below in Eq 1:   

ntrain = 72, ntest = 23, LV = 3, R2 = 0.703, Q2 = 0.638, R2
pred

= 0.776, rm2
LOO train = 0.516, Δrm2

LOO train = 0.194, MAETraining100%

= 0.649, rm2
test = 0.711, Δrm2

test = 0.044, MAETest100% = 0.522 

We have performed a VIP plot analysis, representing the importance 
of each variable present in the final PLS QSTR model. The VIP score was 
used to differentiate between higher and lower statistically significant 
variables. If the VIP score of any particular descriptor is higher than one, 
it is considered a more significant variable for QSTR modelling. In the 
plot, the descriptors were arranged in descending order of importance 
from left to right. Out of six variables, three variables were considered 
more important, i.e., quaternary amine (presence of quaternary amine in 
the molecule), %<1000 (percentage of oligomers with molecular mass 
less than 1000 Daltons) [12] and cat pos P4 (presence of the cationic 
functional group in the pendant chain at position four) with VIP scores 
higher than one. 

On the other hand, cat pos 5, cat pos P3 (presence of the cationic 
functional group in the pendant chain at positions five and three 
respectively) [12] and %a-N (charge density) [12] were considered as 
less essential descriptors in the final model (Fig. 4). It is also evident 
from the loading plot analysis that quaternary amine, cat pos P4, %<

1000 were the most influential descriptors among all based on their 
locations in the plot (Fig. 5). A scatter plot of the observed vs predicted 
training and test set compounds was shown in Fig. S1 in the supporting 
information file, which represents the goodness of fit and predictions 
obtained by the QSTR model against different fish species. 

The QSTR equation for the prediction of combined fish toxicity 
comprises six unique variables. Out of the six variables, only one 
descriptor (<%1000) contributes negatively to polymers toxicity. In 
contrast, the rest of the descriptors result in positive contributions to
wards the toxicity against fish species, which indicates that presence of 
quaternary amines in the molecular building block, presence of cation 
atom in the pendant chain at three, four and five positions and higher 
charge density of polymeric compounds result in higher toxicity against 
fish and vice versa. For example, compound 22 (presence of quaternary 
amines in the molecular building block), 29A and 43A (presence of 
cation atom in the pendant chain at fourth and fifth position), and 
compound 103 (higher charge density) result in higher toxicity against 

fish species. The close analysis of data revealed that a compound with 
only higher charge density results in lower toxicity than a compound 

Fig. 4. VIP plot for combined fish species toxicity model of polymers.  

Fig. 5. Loading plot for combined fish species toxicity model of polymers.  

pEC50 fish = 5.70 + 0.126 × %a − N + 0812 × Quaternaryamines + 1.074 × CatposP3 + 1.230 × CatposP4 + 1.260 × CatposP5 − 0.030 × % < 1000   
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with significant charge density and presence of quaternary amines in the 
molecular building block (e.g. Compound 215 results in higher toxicity 
than 103). The previous study has also evidenced that increased charge 
density raises toxicity against fish [12]. On the other hand, compound 
172 (due to a high value of <%1000, which stands for the percentage of 
oligomers with molecular mass less than 1000 Daltons) results in a lower 
toxicity towards fish. 

We have also performed the Y-randomization study using SIMCA-P 
with an objective to determine whether the final selected model was 
obtained by chance (random) or not (non-random). The analysis 
revealed that the final model was not obtained by chance, i.e., the model 
is non-random. (as shown in Fig. S2 of supporting information file). 
Furthermore, finally, we have performed applicability domain analysis 
of the QSTR model to define its domain in chemical space, which will be 
helpful to determine whether the prediction of a particular compound 
obtained using the model is reliable or not. From Fig. 6, we can observe 
that all the test set compounds are within the final QSTR model’s 

applicability domain at a 99% confidence level (D-critical =

0.0009999). 

3.2. QSTR modelling for toxicity against combined algae species 

In this case, we have tried to develop a QSTR model using the 
combined dataset of three different algal species (P. subcapitata and 
S. caricornutum toxicity data obtained from the ECCC dataset and green 
algae data extracted from the USEPA dataset). The initial dataset 
comprising 78 compounds with toxicity against three different algae 
species was employed for QSTR modelling. The initial results indicate 
that the twenty-four compounds show high prediction residuals, which 
may influence the final model quality. Therefore, the identified twenty- 
four compounds were removed from the initial dataset, and the rest of 
the compounds were used for modelling. The final dataset of 54 com
pounds was divided into two subsets (i.e., training and test sets) 
employing a dataset division software tool that was freely available from 
https://dtclab.webs.com/software-tools. The training set (Ntrain = 40 
polymers) was explicitly used for model building, while the test set was 
used for rigorous validation purpose (Ntest = 14 polymers). The best 
model was obtained from the split data derived from the Kennard-Stone- 
based [19] dataset division approach. Models were obtained employing 
the GA-MLR technique followed by PLS regression [23], leading to a 
final model with four latent variables. The selected model was robust 

and acceptable as per the internationally acceptable internal and 
external validation metrics, as shown below in Eq 2:   

ntrain = 40, ntest = 14, LV = 4, R2 = 0.676, Q2 = 0.516, R2
pred

= 0.703, rm2
LOO train = 0.393, Δrm2

LOO train = 0.159, MAETraining100%

= 0.592, rm2
test = 0.401, Δrm2

test = 0.295, MAETest100% = 0.437 

Here also, we have performed the VIP plot analysis. Out of six var
iables, two variables were considered as more important, i.e., %<a-N 
(charge density) and cat pos P5 (presence of the cation in the pendant 
chain at positions five) [12] and with a VIP score of more than one 
[27,28] (Fig. 7). On the other hand, cat pos P4 and P1 (presence of the 
cationic functional group in the pendant chain at positions four and one, 
respectively), presence of primary amines in the molecular building 
block were less important descriptors in the final model. It is also evident 
from the loading plot analysis that cat pos P5 and %a-N were more 
influential descriptors among all based on their locations in the plot. The 
rest of the four descriptors were considered less influential because they 
are situated near the plot origin (Fig. 8). A scatter plot of the observed vs 
predicted training and test set compounds was shown in Fig. S3 in the 
supporting information file, which represents the goodness of fit and 
predictions obtained by the QSTR model against different algae species. 

The QSTR equation for the prediction of the combined algal toxicity 
comprises six unique variables. Out of the six variables, two descriptors 
(primary amines and %<1000) show negative contributions towards 

Fig. 6. AD analysis of test set compounds at a 99% confidence level (QSTR model for fish toxicity).  

Fig. 7. VIP plot for combined algae species toxicity model of polymers.  

pEC50 algae = 5.855 + 0.137 × %a − N − 0.779Priamines + 0.641 × catposP1 + 1.018 × catposP4 + 1.854 × catposP5 − 0.013 × % < 1000   
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polymers toxicity, indicating that the presence of primary amines in the 
molecular building block and higher value of the percentage of oligo
mers with molecular mass less than 1000 Daltons descriptors result into 
low toxicity to algal species and vice versa. For example, compounds 
191 and 169 show lower toxicity due to the presence of primary amines 
in their chemical structure and higher value of the percentage of olig
omers with molecular mass less than 1000 Daltons descriptors respec
tively Simultaneously, other descriptors result in positive contributions 
towards the toxicity of polymers against algal species, indicating that 
higher charge density of polymeric compounds and cation presence at 
one, four and five positions result in higher toxicity of a particular 
polymer against algae and vice versa. For example, compounds 104 (due 
to higher charge density), 84, 29A and 51A (presence of cation at one, 

fourth and fifth positions) show higher toxicity against the algal species. 
Here also, we have also performed the Y-randomization study using 

SIMCA-P with an objective to determine whether the final selected 
model was obtained by chance (random) or not (non-random). The 
analysis revealed that the final model was not obtained by chance, i.e., 
the model is non-random (as shown in Fig. S4 of supporting information 
file). Furthermore, we have performed an AD study using the DModX 
software tool [28]. From Fig. 9, we can easily understand that all the test 
set compounds are within the final QSTR model’s applicability domain 
at 99% confidence level (D-critical = 0.0009999) (Fig. 8). 

Fig. 8. Loading plot for combined algae species toxicity model of polymers.  

Fig. 9. AD analysis of test set compounds at a 99% confidence level (QSTR model for algae toxicity).  

Fig. 10. Bar chart of experimental fish toxicity and predicted D. magna toxicity employing the i-QSTR model.  
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4. Interspecies toxicity modelling of polymers 

In this study, we have successfully developed individual species- 
species correlation models as well as i-QSTR models using multiple 
linear regressions techniques, as shown in Table S1 (supporting infor
mation file), but all of the final i-QSTR models were generated using the 
partial least squares regression modelling algorithm, as detailed below: 

4.1. i-QSTR modelling between toxicities against D. magna and fish 

To identify the possible use of the existing experimental toxicity of 
different fish species data to estimate the D. magna toxicity, we have 
performed the interspecies quantitative toxicity relationship between 
D. magna and Fish. Out of 78 polymers in the D. magna data set, 45 
polymers were found to have their reported pEC50 values against 
different fish species. These 45 polymers had toxicity data for both Fish 
and D. magna and were used for i-QSTR model development. The set of 
45 common compounds was initially divided into training and test sets. 
The training set of 34 polymeric compounds was used for model 
development, while 11 test set compounds were explicitly used for 
model validation purpose. The final i-QSTR model was based on the 
three components (extracted meaningful information for model devel
opment from an original set of descriptors) and obtained using the PLS 
regression analysis technique. The final model was considered the most 
promising and predictive based on external set prediction quality and 
different internationally accepted internal and external metrics metrics, 
as shown below in Eq 3. 

pEC50 Daphnia = 1.390 − 0.0436 × %a − N + 0.720 × Priamines + 0.236

× Secamines − 1.079 × PoscatP1 + 0.736 × pEC50 Fish  

ntrain = 34, ntest = 11, LV = 3, R2 = 0.695, Q2 = 0.577, R2
pred

= 0.731, rm2
LOO train = 0.443, Δrm2

LOO train = 0.211, MAETraining100%

= 0.538, rm2
test = 0.690, Δrm2

test = 0.074, MAETest100% = 0.457 

The final i-QSTR model consists of five independent variables, one of 
which is experimental fish toxicity value (pEC50_fish). The other four 
variables are the presence of primary and secondary amines in the 
polymeric molecules, charge density, and the cationic functional group 

in the pendant chain. Equation 3 suggests that the presence of primary 
and secondary amine and higher experimental fish toxicity result in an 
increase in D. magna toxicity and vice versa. For example, compounds 40 
and 8 show higher toxicity due to primary and secondary amines in the 
polymeric compounds and higher experimental fish toxicity values. 
Again, compounds 15 and 169 resulted in lower D. magna toxicity due to 
the higher charge density of molecules and a cationic functional group in 
the pendant chain. 

The final i-QSTR model was used to predict D. magna toxicity of the 
rest of the 67 compounds of the fish dataset whose toxicity data was 
missing. The bar plot below (Fig. 10) depicted the experimental fish 
toxicity and predicted D. magna toxicity of the above mentioned 67 
polymers. 

4.2. i-QSTR modelling between toxicities against fish and D. magna 

Out of 112 polymers in the fish toxicity data set, 45 polymers were 
found to have their reported pEC50 values against different D. magna 
species. These 45 polymers had toxicity data for both Fish and D. magna 
and were used for i-QSTR model development. Prior to model devel
opment, the final data set was divided into two subsets (i.e., training and 
test set) using the data set division software tool. Only training set 
compounds were employed in the model development, while the test set 
compounds were used to validate the developed QSTR model. The best 
model was based on four latent variables and obtained using the best 
subset selection, followed by the PLS technique. The developed model 
was considered robust and predictive based on their statistical internal 
and external parameters, as shown below in Eq 4:   

ntrain = 34, ntest = 11, LV = 4, R2 = 0.764, Q2 = 0.693, R2
pred

= 0.803, rm2
LOO train = 0.585, Δrm2

LOO train = 0.177, MAETraining100%

= 0.574, rm2
test = 0.612, Δrm2

test = 0.187, MAETest100% = 0.570 

Eq 4 comprises five unique independent variables, with a 3:2 ratio of 
positive and negative contributions respectively towards predicting fish 
toxicity. A close analysis suggests that higher experimental D. magna 

Fig. 11. Bar diagram of experimental D. magna toxicity and predicted fish toxicity employing the i-QSTR model.  

pEC50 Fish = 1.661 + 0.111 × %a − N − 0.992 × Primary amine − 0.978 × cation pos backbone + 0.411 × catposP5 + 0.797 × pEC50 Daphnia   
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toxicity value, presence of a cationic functional group in the pendant 
chain and higher charge density result in higher fish toxicity values. Hall 
and Mirenda et al. [38] also showed an increased toxicity with 
increasing charge density of METAC and AETAC polymers against fish 
[39]. However, if we compare Eq 3 and Eq 4, the analysis shows that the 
presence of primary amine and charge density act oppositely for the 
prediction of fish and D. magna toxicity. This means that cationic groups 
and charge density are the inversely controlling factors in the toxicity of 
the cationic polymers to D. magna, while toxicity to fish seems directly 
proportional to the charge density of polymeric compounds. 

The final i-QSTR model was used to predict fish toxicity for the rest of 
the 33 compounds of the D. magna dataset whose toxicity data was 
missing for fish. The bar plot below (Fig. 11) depicted the experimental 
D. magna toxicity and predicted fish toxicity of the above mentioned 33 
polymers. 

4.3. i-QSTR modelling between toxicities against D. magna and algae 

In this current study, we have explored whether experimental acute 
toxicity data of different algal species will be helpful in model devel
opment and prediction of toxicity against the D. magna or not. Out of 78 
polymers in the D. magna data set, 21 polymers were found to have their 
reported pEC50 values against different algal species. These 21 polymers 
had toxicity data for both algae and D. magna and were used for i-QSTR 
model development using the GA-MLR technique in Eq 5 below. 

pEC50 Daphnia = 1.040 + 0.698 × pEC50 Algae − 1.184 × PoscatP6 − 1.095

× PoscatP1  

ntrain = 21, LV = 2, R2 = 0.778, Q2 = 0.701, rm2
LOOtrain

= 0.595, Δrm2
LOOtrain

= 0.193, MAETraining100% = 0.406 

The final model was based on the experimental algal toxicity value 
(pEC50_algae) as an essential independent variable and two other essential 
descriptors: the presence of the cationic functional group in the pendant 
chain at positions one and six. Eq. 5 proposes that D. magna toxicity is 
directly proportional to the algal toxicity (higher pEC50_fish results in 
higher toxicity towards D. magna). On the other hand, the presence of 
cationic functional groups in the pendant chain of polymer leads to a 
decrease in the D. magna toxicity and vice versa. 

The final i-QSTR model was used to predict the D. magna toxicity of 
the rest of the 56 compounds of the algae dataset whose toxicity data 
was missing for D. magna. The bar plot below (Fig. 12) depicted the 
experimental algae toxicity and predicted D. magna toxicity of the above 
mentioned 56 polymers. 

4.4. i-QSTR modelling between toxicities against algae and D. magna 

Out of 77 polymers in the algal data set, 21 polymers were found to 

Fig. 12. Bar diagram of experimental algae toxicity and predicted daphnia toxicity employing the i-QSTR model.  

Fig. 13. Bar diagram of experimental D. magna toxicity and predicted algae toxicity employing the i-QSTR model.  
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have their reported pEC50 values against D. magna. These 21 polymers 
had toxicity data for both Fish and D. magna and were used for i-QSTR 
model development using the GA-MLR technique in Eq 6 below. 

pEC50 Algae = 2.055 + 0.882 × pEC50 Daphnia − 0.633 × catposbackbone

+ 1.586 × catpos4  

ntrain = 21, LV = 2, R2 = 0.811, Q2 = 0.763, rm2
LOO train

= 0.683, Δrm2
LOO train = 0.134, MAETraining100% = 0.526 

The final i-QSTR model was used to predict algae toxicity of the rest 
of the 57 compounds of the D. magna dataset for which the toxicity data 
was missing algae. The bar plot below (Fig. 13) depicts the experimental 
D. magna toxicity and predicted algae toxicity of the above mentioned 57 
polymers. 

4.5. i-QSTR modelling between toxicities against different fish and algal 
species data 

Out of 112 polymers in the fish species data set, 27 polymers were 
found to have their reported pEC50 values against different algal species. 
These 27 polymers had toxicity data for both Fish and D. magna and 
were used for i-QSTR model development in Eq 7 below. 

pEC50 Fish = 1.989 + 0.278 × catpos5 + 0.557 × pEC50 Algae + 0.00001

× Mn + 0.738 × catpos4  

ntrain = 27, LV = 2, R2 = 0.826, Q2 = 0.780, rm2
LOO train

= 0.700, Δrm2
LOO train = 0.114, MAETraining100% = 0.447 

The final QSTR model was used to predict fish toxicity for the rest of 
the 48 compounds of the algae dataset whose toxicity data was missing 
for fish. The bar plot below (Fig. 14) depicted the experimental algae 
toxicity and predicted fish toxicity of the above mentioned 48 polymers. 

4.6. i-QSTR modelling between toxicities against different algal and fish 
species data 

Out of 77 polymers in the algal data set, 27 polymers were found to 
have their reported pEC50 values against different fish species. These 27 
polymers had toxicity data for both Fish and D. magna and were used for 
i-QSTR model development using the GA-MLR technique (in Eq 8 
below). 

pEC50 Algae = 1.543 + 0.849 × pEC50 Fish − 0.632 × Primaryamines − 0.593

× catposP6 + 0.306 × Quaternaryamines  

ntrain = 27, LV = 3, R2 = 0.789, Q2 = 0.730, rm2
LOO train

= 0.634, Δrm2
LOO train = 0.143, MAETraining100% = 0.477 

The final i-QSTR model was used to predict the algal toxicity of the 
rest of the 83 compounds of the different fish species dataset for which 
toxicity data was missing for algae. The bar plot below (Fig. 15) depicted 
the experimental fish toxicity and predicted algae toxicity of the above 

Fig. 14. Bar diagram of experimental algae toxicity and predicted fish toxicity employing the i-QSTR model.  

Fig. 15. Bar diagram of experimental fish toxicity and predicted algae toxicity employing the i-QSTR model.  
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mentioned 83 polymers. 
Lastly, the individual species-species experimental toxicity values 

relationship were shown by plotting the experimental toxicity values of 
cationic polymers among fish, D. magna, and algae as shown in Fig. S5 
(supporting information). Fig. S5 depicts scatter plots of experimental 
toxicity values of cationic polymers. A] Experimental Fish toxicity 
values vs experimental D. magna toxicity values of cationic polymers, B] 
Experimental algae toxicity values vs experimental Fish toxicity values 
of cationic polymers, and C] Experimental algae toxicity values vs 
experimental D. magna toxicity values of cationic polymers. 

5. Conclusion 

In the present study, we have generated different individual QSTR 
models for toxicity prediction against fish and algae and i-QSTR models 
among three species, which are D. magna, fish and algae species to 
bridge the toxicity data gap for cationic polymers. All the proposed 
models were generated by employing the partial least squares regression 
technique at different latent variables. The presented study revealed that 
a cationic functional group in the pendant chain at positions one, three, 
four and five enhances the toxicity towards different fish and algal 
species involved in the study. Similarly, higher charge density increases 
the toxicity against both the response endpoints. Quaternary amines in 
the molecular building block of polymers also result in higher toxicity 
towards different fish species. On the other hand, higher values of pct 
less than 1000 Da result in a decreased toxicity towards both the studied 
endpoints. Similarly, the presence of primary amines in the molecular 
building block reduces the toxicity against the algal species. On the 
other hand, the mechanistic interpretation of the i-QSTR models 
revealed several critical characteristic features of polymers along with 
the experimental response of one species which are also helpful for 
toxicity prediction of other species, ultimately helping to reduce the 
experimental efforts as well as animal studies (as shown in Fig. 16). 
Subsequently, the final i-QSTR models were successfully used for 
toxicity prediction of polymers with the absence of experimental toxicity 
for one species but with available toxicity data for other species and vice 
versa. For example, D. magna toxicity prediction of 67 and 56 polymers 
was done using fish and algae experimental toxicity data. 

Similarly, prediction of fish toxicity of 33 and 48 chemicals was done 

using D. magna and algae experimental toxicity data. Finally, prediction 
of algae toxicity of 57 and 83 chemicals was done with D. magna and fish 
experimental toxicity data. Last but not least, mechanistic interpretation 
of the i-QSTR models revealed that the toxicity among these three spe
cies is directly proportional to each other, i.e., if polymer A shows high 
toxicity against fish, the same polymer A results in higher toxicity 
against D. magna and algae and vice versa. 

Inspired by the encouraging results from this study, we are in the 
process of gathering additional cationic polymer toxicity data from the 
US-EPA and private industries to refine the reported models. We also 
plan to develop (a) category-specific QSAR models using a smaller group 
of polymers, i.e., based on C backbone, Si backbone and natural back
bone polymers; (b) read across models to overcome the data scarcity; (c) 
different classification models to categorize polymers into different 
classes as per the EPA guidelines with an ultimate objective to supple
ment/replace the existing regulatory models of US-EPA for cationic 
polymer toxicity. 
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