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Abstract
Pollution by plastic and microplastic impacts the environment globally. Knowledge on the ageing mechanisms of plastics in 
natural settings is needed to understand their environmental fate and their reactivity in the ecosystems. Accordingly, the study 
of ageing processes is gaining focus in the context of the environmental sciences. However, laboratory-based experimental 
research has typically assessed individual ageing processes, limiting environmental applicability. In this study, we propose a 
multi-tiered approach to study the environmental ageing of polyethylene plastic fragments focusing on the combined assess-
ment of physical and biological processes in sequence. The ageing protocol included ultraviolet irradiation in air and in a 
range of water solutions, followed by a biofouling test. Changes in surface characteristics were assessed by Fourier transform 
infrared spectroscopy, scanning electron microscopy, and water contact angle. UV radiation both in air and water caused a 
significant increase in the density of oxidized groups (i.e., hydroxyl and carbonyl) on the plastic surface, whereby water solu-
tion chemistry influenced the process both by modulating surface oxidation and morphology. Biofouling, too, was a strong 
determinant of surface alterations, regardless of the prior irradiation treatments. All biofouled samples present (i) specific 
infrared bands of new surface functional groups (e.g., amides and polysaccharides), (ii) a further increase in hydroxyl and 
carbonyl groups, (iii) the diffuse presence of algal biofilm on the plastic surface, and (iv) a significant decrease in surface 
hydrophobicity. This suggests that biological-driven alterations are not affected by the level of physicochemical ageing and 
may represent, in real settings, the main driver of alteration of both weathered and pristine plastics. This work highlights 
the potentially pivotal role of biofouling as the main process of plastic ageing, providing useful technical insights for future 
experimental works. These results also confirm that a multi-tiered laboratory approach permits a realistic simulation of 
plastic environmental ageing in controlled conditions.
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Introduction

Plastic litter and microplastic pollution is a global scale 
concern (Hurley and Nizzetto 2018; Cutroneo et al. 2020; 
Bellasi et al. 2020). Continuous increase in production, use, 
and volume of mismanaged plastic waste is mirrored by the 
increasing accumulation of these materials in the environ-
ment (Barnes et al. 2009; Nizzetto et al. 2016; Schell et al. 
2021), with water ecosystems acting as final sinks (Schwarz 
et al. 2019; Bellasi et al. 2020; Binda et al. 2021a).

Knowledge about the environmental behavior of (micro)
plastics is crucial to assess the ecological risk (Bond et al. 
2018; Min et al. 2020). Understanding environmental behav-
ior requires to elucidate how these materials change in 
response to physicochemical and biological ageing processes 
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taking place in the environment (Liu et al. 2021). Ultravio-
let (UV) and visible light exposure, mechanical stress, and 
thermo-oxidative processes are known to change the surface 
roughness, enhance oxidation of surface groups, and cause 
embrittlement of plastic materials (Luo et al. 2020, 2022; 
Alimi et al. 2022). These processes, in turn, induce the frag-
mentation and detachment of smaller particles (Chen et al. 
2021), cause the leaching of (toxic) additives (Capolupo 
et al. 2020; Meng et al. 2021; Allan et al. 2022), and increase 
the adsorption of a variety of non-polar compounds (Velez 
et al. 2018; Mosca Angelucci and Tomei 2020). However, 
UV radiation can be affected in an environmental context 
by the water’s chemical features. For example, free reactive 
radicals can be sourced in oxidizing environments (Rosen-
feldt and Linden 2007), enhancing the braking of the poly-
mer chain. On the other hand, other water compounds (e.g., 
dissolved organic matter) can quench UV radiation (Häder 
et al. 2015) and consequently reduce the surface oxidation 
of plastic (Chen et al. 2021). Moreover, plastic can likely 
interact with other chemical stressors during its use life and 
after its dispersion, especially in urbanized contexts (e.g., 
in wastewater or sludge treatments). The abovementioned 
processes, which can further enhance plastic chemical deg-
radation (e.g., alkaline hydrolysis and advanced oxidation 
processes; Miranda et al. 2021; Alimi et al. 2022), are gener-
ally overlooked in laboratory-based ageing tests.

The colonization by bacteria and other microorganisms in 
water environments is another (poorly understood) driver of 
(micro)plastic ageing in water and soils (Hurley and Nizzetto 
2018). This phenomenon can reshape the physicochemical 
properties of (micro)plastic, inducing surface oxidation, 
reducing its hydrophobicity (Chamas et al. 2020), altering 
surface characteristics, and increasing the bulk density of 
fragments (Miao et al. 2021a; Bellasi et al. 2021). These 
phenomena can, in turn, change the environmental fate of 
(micro)plastic particles (Rummel et al. 2017; Leiser et al. 
2020; Duan et al. 2021; He et al. 2021) and can make pol-
ymers more likely to adsorb polar compounds, including 
toxic metals (Mosca Angelucci and Tomei 2020; Binda et al. 
2021b).

These various environmental ageing processes have 
been typically studied individually in laboratory experi-
ments. Although resolving complexity in its constituents is 
often a good research approach, a “one-at-a-time” strategy 
may not be appropriate to unfold the relevance of different 
processes and enable a holistic understanding of the phe-
nomenon. Therefore, experimental setups considering more 
environmental factors are needed to rank the different age-
ing processes and their effects on plastic physicochemical 
properties.

On the other hand, the reconstruction of ageing pro-
cesses through field-scale experiments (e.g., mesocosms) 
can present an excessive complexity instead, blurring the 

information on specific effects induced by different ageing 
processes. Moreover, the simulation of plastic ageing in 
natural environments requires long-term, time-consuming 
experiments due to the notable resistance of plastic poly-
mers. Multi-tiered, laboratory-based experiments at an 
increasing level of system complexity represent instead the 
way forward in this research (Binda et al. 2021b; Alimi et al. 
2022).

Therefore, in this work, we propose a multi-factorial, lab-
oratory-based investigation of the role of water chemistry, 
UV radiation, and biofouling in affecting the surface prop-
erties of plastic. In this way, the different drivers of plastic 
environmental ageing are tested in laboratory conditions, 
avoiding uncontrollable factors typical of field experiments. 
This type of approach can shed light on the more influencing 
factors in altering plastic properties after their dispersion, 
suggesting the next steps towards the creation of reference 
materials simulating environmentally aged plastic. Polyeth-
ylene (PE) was selected as a model polymer considering its 
wide abundance in all environments (Danso et al. 2019).

Materials and methods

Reagents and solutions

All solutions were prepared using ultrapure water (18.2 MΩ 
resistivity, obtained with a Sartorius Arium mini instrument, 
Germany). Nitric acid 0.1 M solution was obtained by dilut-
ing ultrapure  HNO3 (65% wt.), obtained by sub-boiling dis-
tillation in a Milestone (USA) duoPUR distillation system 
(Monticelli et al. 2019), while NaOH 0.1 M solution was 
obtained from 50% in weight NaOH solution (Carlo Erba 
reagents, Italy). Lake water was obtained from a sampling 
campaign in Como lake (45°48′55.08’’ N, 9°04′32.1’’ E). 
Water was filtered with cellulose 0.45 µm pore size filters on 
site and stored in glass bottles. Physicochemical parameters 
and major ions composition of the water sample are analyzed 
following QA/QC protocols already listed elsewhere (Binda 
et al. 2022), and water chemical features are reported in Sup-
plementary Table S1.

PE samples preparation and experimental setup

Polyethylene fragments were prepared by cutting a commer-
cial polyethylene transparent bag into squares with a side 
length of about 4 mm using scissors, reaching a final dimen-
sion of the fragments of 4 × 4 × 0.04 mm (in order to poten-
tially simulate macroscopic objects and large microplastic 
fragments). Then, the following experimental approach was 
applied (Fig. 1): Samples were exposed to UV radiation 
in different solutions or in the air for 10 days (see “Phys-
icochemical ageing experiment”); then, part of the aged 
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samples and pristine materials underwent an incubation in 
axenic microalgal culture (Pseudokirchneriella subcatipi-
tata) for 30 days (see “Incubation of plastic fragments”). The 
biofouling process was not performed simultaneously under 
UV radiation due to the harsh physicochemical conditions, 
negatively affecting algae growth (Rastogi et al. 2020).

Finally, all the UV-aged and biofouled samples were 
analyzed with different analytical techniques to understand 
changes in surface morphology (with scanning electron 
microscopy, SEM), reactive surface groups (with Fourier 
transform infrared spectroscopy, FT-IR), and wettability 
(through water contact angle measurements). As a control, 

Fig. 1  Workflow of the experi-
mental setup
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pristine PE fragments kept in the dark were analyzed too 
(labeled as pristine in the following sections).

Physicochemical ageing experiment

Five different ageing media were tested under UV radiation 
to simulate different environmental stressors:

• 0.1 M  HNO3 in deionized water (pH ca. 1, sample labeled 
as  HNO3), simulating acidic environments in wastewa-
ter conditions (Wang et al. 2021) or long-term effects 
of weaker acidic conditions (e.g., prolonged exposure to 
acid rains, Miranda et al. 2021);

• 0.1 M NaOH in deionized water (pH ca. 13, sample 
labeled as NaOH), to simulate a strongly alkaline envi-
ronment and enhance alkaline hydrolysis of the polymer, 
simulating long-term degradation in weaker alkaline con-
ditions (Miranda et al. 2021). This process can also simu-
late sludge dewatering processes, likely affecting plastic 
fragments (Liu et al. 2022);

• 33%  H2O2 (sample labeled as  H2O2), a liquid medium 
used to simulate thermo-oxidative degradation of plastic 
(Luo et al. 2021; Bhagat et al. 2022). This process can 
also simulate the effects of advanced oxidation processes 
(Alimi et al. 2022; Liu et al. 2022), likely to affect plastic 
particles after their dispersion (e.g., in wastewater treat-
ment plants);

• lake water medium, to simulate a natural freshwater 
environment (sample labeled as LW). Freshwater was 
selected because of the emerging concern on the impacts 
of microplastics in soils and freshwater systems, less 
studied than seawater environments (Bellasi et al. 2020);

• air, to observe the UV-derived ageing only, excluding the 
effect of water media (sample labeled as air).

To simulate the light degradation in different aquatic 
media, ageing experiments were conducted in a quartz vial, 
under magnetic stirring, and irradiating the sample with UV 
radiation perpendicular to the vial (a video of the system 
during ageing experiments is presented in Supplementary 
Video S1). An LED UV-A light source (Alonefire SV13 
15 W, China, with a dominant wavelength of 365 nm) was 
used with a radiation intensity of approximately 1 mW 
 cm−2, as measured using a thermal sensor-based power 
meter (OptoSigma, France). These conditions were tested 
in accordance with the abundant body of literature applying 
UV-A radiation as a sunlight simulation for plastic ageing 
(Liu et al. 2021). The shaking speed was set at 150 rpm, and 
the temperature was kept at 25 ± 2 ℃ (Chen et al. 2021). 
Plastic specimens were collected after 10 days of ageing: 
After this time, the total dose of UV-A radiation is compa-
rable to 50 days of continuous natural sunlight with a clear 
sky in a temperate climate region (Pieristè et al. 2019). This 

UV radiation dose is observed to be sufficient in inducing 
surface oxidation on plastic (Martínez et al. 2021; Sarkar 
et al. 2021; Bhagat et al. 2022). After the ageing process, 
plastic fragments were filtered on a 0.45 µm pore size cel-
lulose filter, rinsed with ultrapure water, and left to dry for 
24 h in air. The fragments aged in the air were instead placed 
in a petri dish and exposed to UV radiation for the same time 
period and at the same radiation intensity (i.e., 10 days at 
approximately 1 mW  cm−2 of radiation intensity).

Incubation of plastic fragments

After the physicochemical ageing tests in different media, 
fragments were exposed to the algal culture to simulate bio-
fouling in freshwater environments. Pristine PE fragments 
were also incubated to test if the previous plastic degradation 
can alter the rate of biofouling development. Moreover, a 
batch with plastic fragments without algal culture (sample 
named Control-B) was prepared to check possible photoin-
duced degradation during the incubation experiment.

Briefly, 80 mg of each type of plastic fragment was added 
in glass Erlenmeyer flasks containing 50 mL of growth 
water medium, prepared according to OECD guidelines 
(OECD 1984). Then, about 0.5 mL of Pseudokirchneriella 
subcapitata inoculum was added, obtaining a starting cell 
density of 68,000 cells/mL. This green alga was selected as 
a model organism to represent the mature biofilm observed 
on (micro)plastics in photic environments, where algae rep-
resent an important component of plastic biofilms (Arias-
Andres et al. 2018; Di Pippo et al. 2020; Smith et al. 2021; 
Nava et al. 2021). Moreover, from the practical point of 
view, this algal species was selected for its abundant use 
in laboratory experiments (mostly as model organisms for 
ecotoxicological tests, Ceschin et al. 2021) and its conse-
quent availability.

All the flasks were exposed to continuous visible light 
(400–700 nm range, intensity 0.3 mW/cm2) under shaking. 
Cell growth was measured after 3 days, 7 days, 14 days, 
and 30 days in all the flasks through visual sorting using 
a Burker counting chamber and Zeiss (Germany) Primo-
Star optical microscope (measurements were performed in 
triplicates). Plastic fragments were finally collected after 
30 days of incubation to permit to the suspended culture 
to reach the growth climax and achieve stable biofouling 
(Amaral-Zettler et al. 2021; Kiki et al. 2022). Then, the 
solution was filtered to extract PE fragments (as made for 
UV-aged fragments), which were then gently rinsed with 
ultrapure water in order to remove loosely attached organ-
isms, and finally left for 24 h in the air to dry (Xiong et al. 
2019). Biofouled fragments were then stored for surface 
properties analysis without removing the attached algae 
to observe how the priming and colonization of plastic 
fragments affect the surface properties. All the biofouled 
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samples will then be presented in results using the label 
of the previous UV treatment  (HNO3, NaOH,  H2O2, LW, 
and air, respectively), adding -B as an ending, while the 
pristine-B label will be used for the biofouled pristine PE 
specimen.

Surface characterization

The obtained dried PE fragments were characterized for their 
morphology and surface functional groups. The micromor-
phology of plastic samples was investigated using a Philips® 
(the Netherlands) Field Emission Gun-Scanning Electron 
Microscope (FEG-SEM), with a 20 keV beam under high 
vacuum conditions. Elemental analysis on the surface was 
performed with an energy dispersive X-ray probe (EDX). 
To make the plastic surface more conductive, samples were 
uniformly covered with a ca. 5 nm thick gold layer using 
a Cressington (United Kingdom) 108 auto vacuum sputter 
coater before SEM analysis. Biofouled specimens were also 
analyzed using a Nikon (Japan) SMZ 745 T stereomicro-
scope to observe the distribution of algal biofilms on plastic 
fragments.

To investigate the changes in surface functional groups 
of PE fragments, attenuated total reflectance infrared spec-
troscopy (ATR-FT-IR) was performed using a Thermo Sci-
entific™ Nicolet™ iS™ 10 FT-IR Spectrometer (USA) on 
pristine and aged plastics; 32 scans for each sample were 
performed in the spectral range 4000–650  cm−1, with a reso-
lution of 0.482  cm−1. Before the spectral analysis of every 
sample, a background spectrum was collected.

The water contact angle was tested through a drop shape 
analyzer (OCA-20, Dataphysics, Germany) by using the 
sessile drop method. Approximately 2 μL of distilled water 
was dropped on the surface of the plastic sample through 
a syringe; then, the contact angles were computed with 
SCA20 software.

All surface analysis techniques were performed on three 
replicate plastic specimens: SEM micrographs present high 
similarities among samples, while FT-IR spectra and water 
contact angles present a relative standard deviation of 5% 
(absorbances values) and 7% (degrees), respectively.

Spectral data analysis

Before further treatments, all FT-IR data were smoothed 
using Savitzky–Golay filter (30 points of the window) and 
scaled on the maximum absorbance peak. The different 
FT-IR peaks were then checked using the “peak analyzer” 
function of Origin 2018 software (OriginLab Corporation).

Then, the carbonyl index was calculated as the ratio of the 
C = O peak at 1715 and the C-H stretching at 1465 (Martínez 
et al. 2021), while the hydroxyl index was obtained from 
the ratio of the maximum absorbance in the window 3600 

to 3100  cm−1 and the absorbance of the C-H stretching at 
1472  cm−1 (Yang et al. 2021). These indexes were calculated 
to obtain a quantitative reference of surface oxidation of 
polymers (after UV ageing) as well as the presence of these 
functional groups in the biofouled fragments. These indexes 
were also compared with the FT-IR spectra of 4 environmen-
tal samples of plastic litter (composed by PE) collected on a 
lake shore (Bellasi et al. 2022).

A t-test was performed on these data using Origin 2018 
software (OriginLab Corporation 2018) to observe statisti-
cally significant differences among the different treatments.

To further assess the differential changes in FT-IR spec-
tra during the different tested ageing processes, principal 
component analysis (PCA) was applied to the spectral data. 
This multivariate statistical tool was widely applied to FT-IR 
data to extract the main trends in spectral changes (Gurbanov 
et al. 2018; Cavaglia et al. 2020; Gorla et al. 2020) and was 
recently applied also to understand the UV ageing of differ-
ent polymers (Zvekic et al. 2022). Specific spectral windows 
showing major changes after ageing were selected prior to 
the analysis (namely, 3600–3000  cm−1, 1800–1500  cm−1, 
and 1400–800   cm−1; see “Physicochemical ageing: the 
effects of water chemistry” and “The role of biofouling 
and potential environmental impacts”). PCA was computed 
using R software (R Core Team 2014).

Results and discussion

Physicochemical ageing: the effects of water 
chemistry

The effect of 10-day UV ageing on PE specimens gener-
ally shows that changes are mostly observable in regions 
of the spectrum representing oxygenated surface groups 
(Fig. 2a): hydroxyl groups (at 3600–3000  cm−1), carbonyl 
groups (at 1800–1500  cm−1), and esters and vinyl groups (at 
1400–800  cm−1), in accordance with previous reports (Song 
et al. 2017; Fairbrother et al. 2019; Kalčíková et al. 2020; 
Chaudhary and Vijayakumar 2020).

Observing the 3600–3000  cm−1 window, a broad band 
of alcoholic -OH was clearly visible in UV-aged plastic in 
air, as well as for specimens aged in alkaline and oxidizing 
conditions (NaOH and  H2O2 samples in Fig. 2b). This is 
possibly ascribed to a higher concentration of •OH radicals 
in water derived from the alkaline conditions (Huang et al. 
2008) and in the presence of  H2O2 under UV radiation (Liu 
et al. 2019): These radicals are known to induce the for-
mation of surface -OH groups on various polymers (Ross 
et al. 2000; Zha et al. 2021). All the other fragments aged in 
water solutions presented spectra with a less marked -OH 
peak compared to the sample aged in air. Water is known to 
inhibit surface oxidation induced by UV radiation, absorbing 
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UV radiation and reducing the photoinduced photolytic 
cleavage of C-H bonds in polymer backbone (Gewert et al. 
2015). Moreover, all the aged samples showed the loss of 
two peaks at 3350  cm−1 and 3200  cm−1 (indicating N–H 
stretching in amides, Parker 1971).

In the 1800–1500  cm−1 range, a reshaping of the peaks is 
observable for almost all the treatments, with more marked 
changes in air and NaOH treatment. A broad band of the 
stretching vibrations between non-conjugated C = C bonds at 
1680  cm−1 is observable, in accordance with other field stud-
ies on PE (Abed et al. 2020). Unlike previous reports (Liu 
et al. 2019), C = O peaks of carboxylic acids and ketones at 
1730  cm−1 are observable in a few samples analyzed in this 
study (LW and  H2O2, Fig. 2c). For the LW sample, the peak 
at 1730  cm−1 is possibly ascribable also to the priming of 
dissolved organic matter, as a conditioning film on the PE 
fragments (Rummel et al. 2021). The limited abundance of 
carbonyl functional groups on the plastic surface after UV 
ageing is further confirmed by the values of carbonyl index, 
which results lower than biofouled and environmental sam-
ples (Fig. 3a).

Comparing then the aged samples with the pristine spec-
trum, the loss of two peaks at 1660  cm−1 and 1630  cm−1 
(representing the acyclic C = C bond and C = O bond in 
amides, respectively, Fig. 2c) is observable in all the treat-
ments. These observations, in addition to the loss of the 
other two peaks in the 3500–3100  cm−1 window (Fig. 2b), 
highlight the leaching in the water of an amide-containing 

compound after the initial ageing of the plastic material. 
Amide-containing compounds are, in fact, often added as 
slip agents in polyethylene (Nielson 1991).

In the 1300–1100  cm−1 window, instead, only  H2O2 and 
LW specimens show some alterations in functional groups 
after UV ageing (Fig. 2d). In the former, the oxidative effect 
of  H2O2 is observable with two evident peaks at 1250  cm−1 
and 1150  cm−1 of C-O stretching, as an index of ester forma-
tion (Fotopoulou and Karapanagioti 2012). These peaks are 
present but less marked in the LW sample.

The marked surface oxidation of plastic also expect-
edly induced a decrease in hydrophobicity of its surface, as 
observed by the decrease of water contact angle in all UV 
treatments compared to pristine plastic (Fig. 3c). This obser-
vation is in good accordance with previous studies testing 
the wettability of UV-aged plastic (Chen et al. 2021).

Beyond the formation of oxygen-containing surface 
functional groups, UV ageing leads to changes in plas-
tic surface morphology and to the embrittlement of poly-
mer structure (Fig. 4), in accordance with other observa-
tions in literature (Luo et al. 2021). This issue seems to 
be mostly related with surface oxidation, but our results 
highlighted that this is also affected by the pH of age-
ing media. As observable from SEM images, both an acid 
 (HNO3, Fig. 4c) and an alkaline environment (NaOH, 
Fig. 4d) change the pattern of surface degradation. Abun-
dant fragmentation of the plastic samples is observable, 
with fragments in the order of 1–10 µm detaching from 

Fig. 2  FT-IR spectra of the 
differently treated PE plastic 
fragments in the different 
media: lake water (LW, in 
brown); air (in violet); NaOH 
(in green);  HNO3 (in blue); 
 H2O2 (in red). The control Pris-
tine PE is also shown (in black). 
Figure (a) shows the whole 
spectral window (the peaks at 
2822  cm−1 and 2810  cm−1 are 
cut for the sake of clarity), and 
the three gray panels indicate 
the specific spectral windows 
analyzed at 3600–3000  cm−1 
(b), 1800–1500  cm−1 (c), and 
1400–800 cm.−1 (d)
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Fig. 3  Bar plot of carbonyl 
index (a), hydroxyl index (b), 
and water contact angle (c) of 
pristine and UV-aged plastic 
polymers before (solid fill) and 
after biofouling (striped pat-
tern). Bars are color-indexed by 
the different physicochemical 
ageing processes, and error bars 
indicate the standard deviation 
(after three replicates). Signifi-
cantly different values after bio-
fouling (p < 0.05 after t-test) are 
indicated with an asterisk, while 
the light green dashed area 
indicates the average ± standard 
deviation range of environmen-
tal samples (Bellasi et al. 2022)
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the plastic surface. The strong surface degradation is in 
accordance with the abundant oxidation observed from 
FT-IR spectra of NaOH-aged specimens (Fig. 2), confirm-
ing increased embrittlement of the polymer structure. In 
contrast, this is unexpected for the  HNO3 treatment since 
plastics treated with this reagent showed limited oxidation 
in the FT-IR spectra (Fig. 2). This behavior is possibly due 
to the embrittlement of PE induced by acidic conditions, 
regardless of the surface oxidation (Geburtig et al. 2018). 
Acidic conditions, in fact, are also observed to negatively 
affect the tensile strength of PE films (Wang et al. 2021).

UV treatment in air and the treatment with  H2O2 led 
to the formation of small holes (in the order of 100 nm) 
on the polymer surface, which can be the initiation sites 
of oxidative radical-induced chain reactions in the amor-
phous phase of the polymer matrix (Pickett 2018).

As previously observed, the presence of dissolved 
organic matter, other dissolved ions, and water itself can 
instead inhibit the effects of UV radiation on surface alter-
ation (Gewert et al. 2015; Wang et al. 2021). Incidentally, 

surface degradation was less marked in specimens exposed 
to UV radiation in lake water (Fig. 4f).

The role of biofouling and potential environmental 
impacts

After 30 days of biofouling experiments, the algal popu-
lations in the batches are at their maximum growth, with 
a population density between 3.2 ×  107 and 3.9 ×  107 cells/
mL (see Supplementary Fig. S1). No significant differences 
in algal growth were observed among the batches. All the 
batches presented PE specimens covered by algae on a mac-
roscopic scale (Supplementary Fig. S2).

Whole FT-IR spectra and specific spectral windows of 
biofouled specimens are observable in Fig. 5. Differences are 
observable compared to the specimens that only underwent 
physicochemical ageing, especially in specific the spectral 
windows of hydroxyl, carbonyl, and vinyl groups (Fig. 5b, 
c, d). Starting from the -OH region at 3600–3000  cm−1, the 
patterns result mostly similar to the UV-aged specimens 

Fig. 4  SEM micrographs of 
the different PE specimens 
at 2000 × magnifications: (a) 
pristine PE; samples UV-aged 
in  H2O2 (b),  HNO3 (c), NaOH 
(d), air (e), and lake water (f). A 
detail at 16,000 × magnifications 
is presented in (b) and (e)

6305Environmental Science and Pollution Research  (2023) 30:6298–6312

1 3



(Fig. 2b), but all the biofouled specimens except NaOH-
B presented a higher -OH band absorption, as observable 
by the significantly higher hydroxyl index values, similar 
to environmentally collected plastic (Fig. 3b). Moreover, 
pristine PE samples after biofouling presented a wide -OH 
band too. This can be related to the abundant presence of 
-OH-containing compounds (e.g., cellulose, hemicellulose, 
and pectin) at the surface of microalgal biological material 
(Binda et al. 2020; Madadi et al. 2021).

In the 1800–1500   cm−1 window, a re-shaping of the 
peaks of C = O carbonyls, with a broad peak at 1740  cm−1, is 
observable after biofouling in air-B,  H2O2-B, and LW-B, as 
well as on pristine-B specimens. This is instead less marked 
in NaOH-B and  HNO3-B samples (Fig. 5c). This re-shaping 
can be caused by the lipids of Pseudokirchneriella subcapi-
tata, rich in carbonyl functional groups (Xiong et al. 2020): 
Their presence also causes a significant increase in carbonyl 
index values in all the plastic specimens tested, with values 
closer to environmentally collected plastics in comparison 
to UV-aged samples (Fig. 3a).

Another explanation evoked for the presence of the 
increasing FT-IR peak at 1730  cm−1 after longer ageing 
times is the biodegradation of the polymer by the coloniz-
ing microorganisms (Tu et al. 2020). This issue, however, 
can be ruled out in our case since this peak was only sparsely 
observed in UV-oxidized plastics (Fig. 2c), while UV radia-
tion is normally considered as the main driver of carbonyl 
formation on polymer surfaces.

Moreover, two new FT-IR peaks are observable in 
LW-B, air-B, and  H2O2-B samples at 1650   cm−1 and 
1550  cm−1 representing primary and secondary amides, 
respectively (Rahman et  al. 2018). These peaks fur-
ther confirm the appearance of different surface func-
tional groups once the plastic is covered by microbiota 
and likely represents the polypeptide structures of algae 
(Helm and Naumann 1995; Xiong et al. 2020). Moreover, 
 HNO3-B and pristine-B samples present a broader band 
at 1550  cm−1, possibly indicating the recombination of 
the amide with other substituents (Rahman et al. 2018). 
NaOH-B specimens show instead lower adsorption in 
these bands compared to other biofouled samples.

Finally, analyzing the 1400–800  cm−1 window, most of 
the patterns observed after UV ageing of samples (including 
the peaks present only in the  H2O2-aged sample, Figs. 2d and 
5d) are unvaried. However, 3 out of 6 samples presented a 
new sharp peak at 860  cm−1 (indicating a glycosidic bond) 
and a partial reshaping of the peak at 1080  cm−1 (C-O stretch 
of alcohols). This indicates the presence of polysaccharides, 
derived from the algal colonization of plastic fragments 
(Kim et al. 2003). This issue was already observed in PE 
after the incubation with fungi (Chaudhary and Vijayaku-
mar 2020). However, the uneven colonization of algae on 
plastic samples likely made this peak not present in all the 
incubated specimens, due to a discontinuous coverage of 
plastic fragments. This uneven distribution is clearly observ-
able from the pictures of biofouled samples (Supplementary 

Fig. 5  FT-IR spectra of the 
biofouled PE without pre-
treatment (pristine-B, in light 
blue) and after the different 
ageing processes in lake water 
(LW-B, in brown), air (air-B, 
in violet), NaOH (NaOH-B, 
in green),  HNO3  (HNO3-B, 
in blue), and  H2O2  (H2O2-B, 
in red). The control-B speci-
men is also shown (in black), 
suggesting that the visible light 
used for algal growth poorly 
affects plastic surface groups 
after 30 days of incubation. 
Figure (a) shows the whole 
spectral window (the peaks at 
2822  cm−1 and 2810  cm−1 are 
cut for the sake of clarity), and 
the three gray panels indicate 
the specific spectral windows 
analyzed at 3600–3000  cm−1 
(b), 1800–1500  cm−1 (c), and 
1400–800 cm.−1 (d)
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Fig. S2) and causes a heterogenous response in FT-IR bands 
of functional groups which are not abundant in the biofilms.

The biofilm formation on PE is also reshaping the sur-
face morphology and wettability of plastic, independently 
from the previous ageing. Observing the morphology of 
all biofouled specimens, different agglomerates of adhered 
Pseudokirchneriella subcapitata cells are observable in all 
the samples, regardless of the previous treatment (Fig. 6 and 
Supplementary Fig. S3).

The adhesion of algae is observed to happen also on the 
smooth surfaces of plastic, and not only in surface defects 
(Fig. 6c,d). Moreover, UV-aged and pristine plastic (present-
ing different wettability, Fig. 3c) show similar biofilm cover-
age after 30 days (Supplementary Fig. S2). This issue indi-
cates that the changes in micromorphology, the enrichment 
in oxygen-containing functional groups, and the increased 
wettability of UV-aged plastic limitedly affect the formation 
of a stable biofilm on PE fragments.

All the attached microalgae appear on the plastic sur-
face in concomitance with a dense layer observable from 
SEM images (likely generated by extracellular polymeric 
substances) and various salt depositions, derived from the 
accumulation of nutrients from the water by the microbial 
species. The EDX analyses of these salts indicate the con-
centration of Ca, K, Na, and Cl up to 25%, 12%, 4%, and 
13% in weight, respectively (Supplementary Table S2). 
This is in accordance with previous studies performed on 
PET and PLA after incubation in saltwater (Bhagwat et al. 
2021), as well as with the elemental analyses of cyanobac-
teria-based biofilm analyzed on environmentally aged plas-
tics (Leiser et al. 2021). This issue, moreover, presents a 
potential environmental side effect: Biofilm on plastic, in 

fact, can actively accumulate elements on the surface of 
plastic, inducing potential alterations of the natural cycling 
of elements in water bodies, as well as possibly affecting the 
environmental fate of potentially toxic elements in polluted 
environments (Seeley et al. 2020; Binda et al. 2021b).

Another effect of the biofilm covering on the plastic 
surface is the further increased wettability, as observed by 
contact angle measurements (Fig. 3c). The further change in 
contact angle after biofouling is statistically significant for 
all samples but NaOH-B and Air-B. The increase in wettabil-
ity due to biofouling was already observed after the incuba-
tion in seawater (Tu et al. 2020) and indicates the increased 
affinity of biofouled (micro)plastic toward the adsorption of 
polar compounds and metals (Binda et al. 2021b).

Chemical and biological ageing: comparison 
of the effects on (micro)plastic properties

The results described above confirm UV radiation to be the 
main determinant of changes in the plastic specimen prop-
erties, increasing oxygen-containing functional groups and 
enhancing surface roughness (Davranche et al. 2019; Fair-
brother et al. 2019; Martínez et al. 2021; Wang et al. 2021). 
However, here, we show that the chemical condition of the 
water media can influence the ageing processes and, poten-
tially, also the environmental behavior of (micro)plastics in 
water bodies. It is worth considering that acid and alkaline 
environments can enhance physical plastic degradation, pos-
sibly facilitating the formation of microplastics in extreme 
environments such as industrial wastewater pipelines or 
effluent points.

Fig. 6  SEM micrographs 
of samples after biofouling 
at 500 × magnifications: (a) 
specimens previously UV-aged 
in lake water (LW-B) and (b) 
specimens previously UV-aged 
in NaOH (NaOH-B). Details 
of algal priming on the plastic 
surface at 4000 × magnifica-
tions, with the presence of salty 
depositions, after ageing in 
 HNO3  (HNO3-B, panel c) and 
from unaged PE (pristine-B, 
panel d)
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More importantly, the results highlight an important role 
of biofouling in modifying plastic surface characteristics, 
regardless of the previous ageing conditions of the speci-
mens: Similar to irradiated specimens, pristine PE fragments 
were also colonized by biofilms. After biofouling, all the 
specimens present similar changes in plastic surface mor-
phology, hydrophobicity, and chemical functional groups, 
altering the original surface property of plastic (Figs. 3, 5, 
and 6). As a further confirmation, the abundance of car-
bonyls and hydroxyl groups and the grade of wettability of 
biofouled specimens present a higher similarity with envi-
ronmental samples compared to the UV-aged specimens 
(Fig. 3).

The independence of chemical and biological ageing of 
(micro)plastics is further highlighted by the scores plot after 
PCA of FT-IR spectra (Fig. 7): All specimens show a shift 
with higher values of component 1 (explaining 96.91% of 
the total variance) after biofouling compared with UV-aged 
samples. Similarly, the pristine-B sample also shows this 
shift in comparison with the pristine control sample. This 
observation confirms that biofouling affects the surface func-
tional groups of all the specimens in a similar way, generat-
ing similar bands in all samples (especially hydroxyl groups 
and amides, which FT-IR bands show high positive loading 
values, Supplementary Fig. S4). This shift is instead less 
marked on component 2, where most of the samples with 
similar chemical ageing present similar score values. Only 
LW and pristine specimens show instead a major change 
in component 2 scores after biofouling, possibly related to 
the higher change in intensity of hydroxyl peak. This peak 

shows, in fact, the highest loading values on component 2 
(Supplementary Fig. S4).

However, similarly to previous biofouling experiments 
performed in the field (Delacuvellerie et  al. 2021), the 
changes in surface properties are observed to be not homo-
geneous across the particle surface in the different samples. 
This is observable, for example, by the appearance of the 
sharp peak of glycosidic bond in only half of the samples 
(Fig. 5d), and it is evident from the picture of biofouled plas-
tic fragments in Supplementary Fig. S2. The main explana-
tion for the uneven distribution of biofilms on PE fragments 
is that the biofouling process generally involves microbial 
adhesion as a first phase: This is a mostly random process, 
depending on the type and viability of pioneering organ-
isms possibly anchoring and growing on the substrate (Binda 
et al. 2021b). Only after this phase, extracellular polymeric 
substances secretion and microbial proliferation can take 
place (He et al. 2021; Binda et al. 2021b; Barros and Seena 
2021). Our results show anyway that this random process is 
poorly affected by UV ageing since abundant biofouling is 
also observed on pristine PE (pristine-B in Fig. 6d and Sup-
plementary Figs. S2a and S3a). Therefore, the role of plastic 
properties and micromorphology seems to be marginal in the 
formation of a mature biofilm after 30 days. More detailed 
investigations are instead needed to understand if the sur-
face properties of plastic or other processes happening in 
the water environment (e.g., the priming of organic matter) 
can influence the initial colonization of microorganisms and 
biofilm growth on plastic (Bhagwat et al. 2021).

Toward a better understanding of environmental 
plastic ageing

This study shows that the chemistry of water can alter the 
surface properties of plastic during ageing by UV, suggest-
ing that plastic polymers can potentially act differently once 
dispersed in different water and urban environments.

However, an evident role in plastic environmental behav-
ior is indeed played by biofilm formation on plastic frag-
ments. Our multi-tiered laboratory test confirms this hypoth-
esis, showing that plastic surface physicochemical properties 
are strongly affected by biofouling. Since the colonization 
of plastic surfaces by different microorganisms has been 
reported for litter and microplastics collected in a variety 
of aquatic systems (Nava and Leoni 2021; Delacuvellerie 
et al. 2021; Deng et al. 2021; Nava et al. 2021), this process 
needs further investigation in future studies, in order to more 
realistically mimic the environmental behavior of (micro)
plastics.

Studies of plastic ageing in environmental settings 
showed that biofilm’s structural and functional features are 
controlled by the environmental conditions and substrate 
types (Delacuvellerie et al. 2021; Barros and Seena 2021; 
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Nava et al. 2021). However, field experiments still present 
high variability derived from local conditions and uncon-
trollable parameters (e.g., climate and complex ecosystem) 
which can blur the effects of different attaching organisms 
and of the water conditions in regulating (micro)plastic envi-
ronmental behavior.

Our analyses on an axenic strain showed that even using 
a simplified biological model, colonization is efficient to 
mimic this process in laboratory conditions, in agreement 
with an earlier study (Bhagwat et al. 2021). Future experi-
ments should fill the gap between simplified laboratory 
experiments and uncontrollable field ones, focusing on 
incubation tests with mixed strains containing selected taxa 
of algae, fungi, and bacteria to understand how different 
polymers age under different communities with prevail-
ing autotrophs vs. heterotrophs (Miao et al. 2021b). These 
improvements will possibly lead to the generation of refer-
ence materials of naturally aged plastics, for a more realistic 
simulation of the environmental behavior of aged plastic 
particles in future experimental studies.

An improved understanding of this process in controlled 
conditions will help to understand the potential cascade 
effects on the natural environment, such as changes in plas-
tic environmental fate (Amaral-Zettler et al. 2021), increased 
adsorption of polar and inorganic compounds (Binda et al. 
2021b), and alterations on the cycle of nutrients (Seeley 
et al. 2020).

Conclusions

This study combined the assessment of physical, chemical, 
and biological ageing on plastic fragments in order to recon-
struct (micro)plastic ageing in water environments, using PE 
fragments as reference. The ageing tests were performed in 
different water solutions under UV radiation, followed by 
the incubation of plastic fragments in a selected strain of 
microalgae. The surface analyses highlight that the main 
processes affecting plastic in the environment are mostly 
related to UV-induced oxidation, but that also the different 
water media can enhance or reduce this effect. It is observa-
ble that oxidizing acid and alkaline environments determines 
different formations of surface functional groups and affects 
plastic rugosity and physical degradation.

This study, moreover, highlights that biofouling affects 
the surface properties of plastic, regardless of previous 
treatments, and also affects pristine plastic. Biofouling 
determines the formation of specific functional groups rep-
resenting polypeptides and polysaccharides, as well as a 
strong alteration of microscopic surface structure. Biofoul-
ing appeared to proceed independently from the previous 
level of ageing of the plastic specimen, including pristine 
PE. Future studies addressing the environmental behavior 

of plastics and their surface interaction with water chemi-
cal constituents and contaminants should consider chemical 
and biological ageing processes, enabling tracking of the 
effects of formation and progression of biological colonies 
on (micro)plastic surfaces. An in-depth understanding of the 
biofouling process will permit the creation of more realistic 
aged (micro)plastic reference materials.
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