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One possible way of monitoring plastic particles in sea water is by imaging spectroscopic measurements on filtrates. The idea is that 
filters from seawater sampling can be imaged in many wavelengths and that a multivariate data analysis can give information on (1) 
spatial location of plastic material on the filter and (2) composition of the plastic materials. This paper reports on simulated sam-
ples, with spiked reference plastic particles and real seawater filtrates containing microplastic pollutants. These real samples were  
previously identified through visual examination in a microscope. The samples were imaged using three different imaging systems. 
The different wavelength ranges were 375–970 nm, 960–1662 nm and 1000–2500 nm. Data files from all three imaging systems were  
analysed by hyperspectral image analysis. The method using the wavelength span 1000–2500 nm was shown to be the most applicable  
to this specific type of samples and gave a 100% particle recognition on reference plastic, above 300 µm, and an 84% pixel recognition 
on household polyethylene plastic. When applied to environmental samples the technique showed an increase in identified particles 
compared with visual investigations. These initial tests indicate a potential underestimation of microplastics in environmental samples. 
This is the first study to demonstrate that hyperspectral imaging techniques can be used to study microplastics down to 300 µm, which 
is a common size limit used in microplastic surveys.

Keywords: visualisation of multivariate results, interactive visual data handling, plastic identification, visual spectroscopy, near infrared  
spectroscopy, microplastics

Introduction
Microplastics, commonly defined as synthetic polymers with 
a size below 5 mm, which are found in seawater samples 
from all over the globe,1–3 are making headlines as emerging, 
widespread pollutants. For sampling microplastics in surface 
water, a trawl with a mesh size around 300 µm is often 
used. The methodological lower size limit is thereby 300 µm, 
although some studies measure smaller particles through 

using finer mesh sizes.4 The plastic pollution of our oceans 
has proven to be of societal, environmental and economic 
concern5,6 and is included as one of the descriptors for good 
environmental status (GES) in the marine strategy framework 
directive (MFDS).7

Plastic polymers commonly found in the environment 
are polypropylene (PP), polyethylene (PE), polyethylene  
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terephthalate (PET), polystyrene (PS) and polyvinylchloride 
(PVC).8 Together these comprise 72.9% of the plastic produced 
globally.9

Quantitative measurements are important for risk assess-
ment and monitoring purposes. They are also important 
in allowing temporal and spatial comparison of pollut-
ants. Currently microplastic surveys require visual analysis, 
often performed using a microscope. This technique is 
time consuming and investigations show that results differ 
between researchers.7 A faster and more objective method of 
analysis, suitable for environmental samples, would therefore 
be beneficial in future microplastic studies. An increasing 
number of publications are combining microscopy with spec-
tral analysis of identified particles to avoid misidentifica-
tion.2,10 Often Raman or Fourier transform infrared (FT-IR) 
spectroscopy is used in combination with visual identification 
in a microscope. These techniques require individual particle 
analysis, meaning that the suspected plastic particle has to 
be visually identified as plastic, or suspected plastic, and then 
tested spectroscopically. It has, however, been shown that 
for plastic particles and fragments the particles are likely  
underestimated.11

Methods for reliable and objective quantitative and qualita-
tive analysis of plastic particles in environmental samples are 
needed. Hyperspectral imaging of large filter areas (1–100 cm2) 
combines spectral and spatial information that can be used to 
detect and identify plastic particles and discriminate them 
from biological material found in sea water filtrates. The 
measurement is fast but produces a large data file that has 
to be submitted to an optimal chemometric analysis to extract 
relevant information. The software used is often based on 
interactive visualisation and brushing between images.

In this paper three hyperspectral imaging12,13 solutions 
are presented and compared for the study of a number of 
commonly produced plastic polymers. The aim was to test if 
hyperspectral imaging can replace or complement the less 
objective visual counting in microscopes for microplastic 
particles down to 300 µm. To test this, we investigated if the 
techniques can accurately identify reference plastics, common 
household plastics and finally if they can differentiate between 
the often more degraded plastic particles and organic mate-
rial found in real seawater filtrates. 

Through comparing instruments with different spectral 
ranges and resolutions, it was possible to assess what spatial 
and spectral resolution would be required to achieve robust 
analysis results.

Material and methods
Industrial reference plastics
A number of plastic particles that are often used in industry 
and found in sea water samples were selected to use as 
references (Table 1). A few less common polymer types were 
also analysed, including a set of bioplastics as described in 
Table 1.

Household reference plastics
The models and the spectra were tested and compared with 
household plastic scanned on a white reflective Teflon back-
ground (Table 2). Different colours and properties of the plas-
tics were tested, as additives and colouring agents have been 
shown to affect spectroscopic identification when using other 
spectroscopic methods such as Raman.10

Reference plastic Size Abbreviation Supplier

Polyamide 350 µm PA Goodfellow
Polyamide unfilled 3-5 mm PA Erteco rubber
Polyamide 4.6 fibre 1 mm wide PA Goodfellow
Polyhydroxyalkaonate-biopolymer 3 mm PHA Goodfellow
Polyhydroxybutyrate-biopolymer 5 mm PHB Goodfellow
Poly L lactic acid-biopolymer 5 mm PLLA Goodfellow
Bioon-biopolymer 3 mm Bioon Bioon
High impact polystyrene 5 mm HIPS 485 Erteco rubber
Polystyrene 900 µm PS Goodfellow
Polystyrene 250 µm PS Goodfellow
Polypropylene 3 mm PP Sigma Aldrich
Polypropylene 3 mm PP Goodfellow
Polyvinylchloride unplasticised 250 µm PVC Goodfellow
Low density polyethylene 3-5 mm PE-LD Erteco rubber
High density polyethylene 3-5 mm PE-HD Erteco rubber
Polyethyleneterephtalate 3 mm PET Goodfellow
Polycarbonate 3 mm PC Goodfellow

Table 1. Names, composition and particle size of the reference plastics.
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Surface water samples
The imaging techniques were applied on samples that were 
collected from the SV Sea Dragon in the Baltic Sea during 
the month of August 2014. Sampling was performed using 
a 3 m long manta trawl with a 300 µm mesh and a collection 
sock at the end. A flow meter was attached to the aperture 
of the trawl. The trawl was attached at the spinnaker pole 
and towed for 60 min, along the side of the boat, at a speed 
of 0.5–1.5 m s–1.

Upon retrieval the sides of the trawl were rinsed and the 
sock was removed. The contents of the sock were transferred 
to a glass jar with a polypropylene lid. Particles that were visu-
ally identified as plastic and suspected particles that could 
not be confirmed visually to be plastic, were transferred to 
glass petri dishes and scanned with a white Teflon reflecting 
background.

Hyperspectral imaging
Hyperspectral images are collected as hypercubes (Figure 
1), which contain a large number of data points. This makes 
multivariate analysis and data reduction necessary. Figure 
1 shows the decomposition of a hypercube to get two score 
images and two loading vectors. In many cases a few compo-
nents represent 99% of the data and the remainder is noise. 
This is a huge data reduction. Just looking at score images is 
not enough. A more interesting technique is making scatter 
plots where each pixel is represented as a point. Because 
of the vast amount of data, the plots have to be visualised as 
density plots. In such plots clustering can be easily recognised. 
In most cases a cluster of pixels representing background can 
be detected and removed. Furthermore, different materials 

Table 2. Household plastic, classified from resin number, used to 
test models and to compare properties with reference plastics. 

Plastic Colour Description Origin

PP Black Hard Food 
packaging

Transparent Hard Food 
packaging

Tranparent Soft Product 
packaging

White Soft Food 
packaging

Yellow Hard Tobacco 
packaging

White Hard Tobacco 
packaging

Black Hard Tobacco 
packaging

Orange/white/
transparent/

green

Soft Food 
packaging

PE Pink Soft Product 
packaging

Transparent Soft Plastic 
bag

White Soft Food 
packaging

Blue/white Soft Food 
packaging

PET Green Hard Drinking 
bottle

Transparent PETE Hard Food 
packaging

Transparent R-PET Hard Food 
packaging

Transparent Hard Drinking 
bottle

PS Black/brown Hard Food 
packaging

Transparent Hard Drinking 
cup

White Expanded PS Food 
packaging
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Background 
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Figure 1.  Hyperspectral images have at least three ways. Two ways are the physical  
dimensions width and length, usually called X and Y (IxJ). The third way is spectral, ver
y often wavelength (K).  
Principal component analysis of mean-centered data produces score images and loading 
vectors. The loading vectors can be used for spectral interpretation. 
The score images can be studied as images, but they can also be used in score plots. 
Brushing is an interactive means of marking points in the score plots and finding their   
spatial position or the other way around. 
Usually points of similar chemical composition group together in the score plot. 
The example shows three clusters: background, class 1 and class 2. These could be 
Filter background, plastic 1 and plastic 2. 
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Figure 1. Hyperspectral images have at least three dimensions. 
Two are the physical dimensions width and length, usually 
called X and Y (IxJ). The third dimension is spectral, very often 
wavelength (K). Principal component analysis of mean-centred 
data produces score images and loading vectors. The load-
ing vectors can be used for spectral interpretation. The score 
images can be studied as images, but they can also be used 
in score plots. Brushing is an interactive means of marking 
points in the score plots and finding their spatial position or the 
other way around. Usually points of similar chemical composi-
tion group together in the score plot. The example shows three 
clusters: background, class 1 and class 2. These could be Filter 
background, plastic 1 and plastic 2.
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may form different clusters if their chemical composition 
and spectroscopic behaviour are different. Figure 1 gives a 
conceptual example of such a case. Two components have 
been plotted against each other resulting in three clusters. 
The pixels representing background are shown in green and 
two other clusters show samples with different characteristics 
and a small overlap.

Videometer
The Videometer instrument (Videometer A/S, Lyngsø Allé 3, 
DK-2970 Hørsholm, Denmark) makes 2050 × 2050 pixel images 
of a sample size of 120 × 120 mm in 19 wavelength bands. This 
is done by illuminating the sample with a sequence of radiation 
bursts generated from light emitting diodes. An integrating 
sphere is used for distributing the illumination evenly over 
the sample. The wavelength range is 375–970 nm. The spatial 
resolution is about 60 µm and the magnification is determined 
by the objective used. Only one objective was available. The 
measuring time is less than a minute.

Malvern
The Malvern (previously MatrixNIR, Enigma Business Park, 
Grovewood Road, Malvern, WR14 1XZ, United Kingdom) is 
an InGaAs camera. The sample is illuminated by four quartz 
halogen lamps. The image is collected through a lens and a 
filter (monochromator) for selecting wavelengths. The mono-
chromator is a liquid crystal tuneable filter. The resulting 
images are of size 256 × 320 pixels for a sample of 49 × 55 mm. 
The wavelength range is 960–1662 nm with a band every 6 nm. 
The spatial resolution is 0.17 mm in the setup (objective) used, 
but other setups are possible, and the measuring time varied 
between 5 min and 10 min.

Umbio Inspector
The Umbio Inspector instrument (modified by Prediktera AB, 
Riddaregatan 8, SE 903 36 Umeå, Sweden from Sisuchema 
Specim, Oulu, Finland) instrument is a line scan camera based 
on an HgCdTe detector array. The monochromator element is a 
prism–grating–prism. Whole images are made by moving the 
sample on a synchronised belt and adding scanned lines. In 
this way, images of a width of 320 pixels are made in up to 256 
wavelength bands over 1000–2500 nm. The length of the images 
is determined by how many lines are scanned. A 22.5 mm lens 
was used on the camera. The spatial resolution is dependent 
on line width, but typically 300 µm is easily achievable. The 
measuring time is around 1 min dependent on chosen settings 
such as measuring length and integration time.

Software and data analysis
The Evince software (Prediktera AB, Riddaregatan 8, SE 903 
36 Umeå, Sweden) for hyperspectral image analysis was 
used for the calculations. This software is interactive by 
using screen and cursor brushing. The software combines 
the multivariate methods principal component analysis,  
classification and regression analysis. A special feature is 
the use of graphical interaction in plots called “brushing”.14 
Tests on reference materials and household plastic were 
used to evaluate the methods through counting percentage 
of successfully identified particles and percentage correctly 
identified pixels.

Results and discussion
Software and data analysis
Analysis was performed through a multi-image import, with 
the reference plastic and the sample. Subsequently a principal 
component analysis (PCA) plot was created, from the imported 
images and their spectra, which was then used to analyse for 
microplastics.

For an initial background removal the spectra were limited 
to 1667.3–2086.4 nm, which were the areas that seemed less 
perturbed by degradation processes. In this area the first 
overtones of C–H stretching15 can be seen which showed 
pronounced peaks for all tested plastics.

A multiplicative scatter correction (MSC)12 was then applied 
to decrease the baseline shifts and slope variations between 
reference plastic and environmental samples. Additionally a 
first derivative transformation was added. Background and 
organic material could then be removed through a careful 
simultaneous analysis of the spectral information and cluster 
formation using five different components.

Once the background was removed, the wavelength scope 
could be widened to include wavelengths 1082.9–2248.4 nm, 
thereby including the second overtone of C–H and the first 
overtone of the C–H combination bands (Figure 2). This facili-
tated polymer identification, through a cluster formation with 
the respective reference plastic (Figure 3).

The spectra of the identified particles were then used to 
confirm the polymer type. The combination bands for C–H 
were, however, excluded due to the amount of noise perturbing 
their signal in most samples.

Data handling of spectroscopic imaging has been acknowl-
edged as one of the main problems with the technique, by 
several authors.16 The software used in this article provides 

Instrument X size Y size # wavelengths Wavelengths (nm) Measuring time (mins) Spatial resolution

Videometer 2050 2050 19 375-970 1 60 µm

Malvern 320 256 118 960-1662 5–10 300 µm, 1000 µm

Umbio 320 free 256 1000-2500 1 300 µm

Table 3. Summary of the hyperspectral techniques used.
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the possibility to work simultaneously with several aspects of 
the data while maintaining an overview (Figure 3).

A partial least squares discriminant analysis prediction 
model can be constructed for recognising reference plastics. 
However, when applied to household plastics or plastic pieces 
found in the marine environment, and hence subject to degra-
dation processes, the model shows large classification errors. 
This was likely due to the large difference in peak intensity and 
the increased relative level of background and noise observed.

Using a PCA model approach, as described, where the scan 
of the sample was combined with a scan of reference plastics 
was found to be more reliable. After transforming the data, 
the plastic particles in the samples could be separated from 
other material such as shells, animals and algae, through 
clustering with the reference plastic.

Through the usage of a validation system with confirming 
polymer type, not only through the clusters formed with PCA, 
but through a continuous cross validation of the spectral 
match, the reliability of the method increased.

Reference materials
Spectra from reference plastic, household plastic and envi-
ronmental samples were tested with the equipment with the 
highest spectral range (Umbio Inspector) to compare the 
spectral quality. Tests on household plastic and environmental 
samples show several spectral dissimilarities compared to 
the ones obtained from reference plastics. This is exemplified 
using different types of polyethylene in Figure 4, other poly-
mers showed similar patterns.

Notably the absorbance intensity decreased for the 
household plastic and an even further decrease, relative 
to the reference, was seen for the plastic found in marine 
samples. The relative influence of background and noise 
also increased. Areas in the beginning and the end of the 

wavelength interval seemed more affected, which has also 
been noted in other applications of NIR spectroscopy.16 
Areas that were less affected were used for initial differen-
tiation between the plastic and other material as described 
under data handling.

The differences complicate using an automatic model 
approach to the analysis. Using transformation techniques 
such as multiplicative scatter correction (MSC) can help to 
correct for these differences and plastic particles can then be 
distinguished from the background (Figure 3) using the more 
manual approach described in the data analysis section.

A further understanding of the degradation effects on 
the spectra of different polymers, as well as an inclusion 
of the spectral effects of additives, is important to include 
for future studies of plastic particles in environmental 
samples. Particularly for adopting a semi-automatic recog-
nition system or model as a model based on reference plastic 
would not recognise changes introduced by degradation 
processes.

Surface water samples
In the analysed samples 50 of 51 of the particles, which had 
visually been identified as plastic, were confirmed as plastic 
polymers with the hyperspectral imaging analysis. Additionally, 
13 other particles, which were not identified as plastic pieces 
with visual analysis, were identified as plastic resulting in 
an average increase of 50% in the number of particles in the 
samples (Table 4).

This further confirms the suspicion that particles are often 
at risk of being underestimated and fits the results as shown 
by Song and colleagues.11 It should, however, be noted that 
these particles in question were separated from the sample as 
suspicious anthropogenic particles, the actual underestima-
tion might be higher.

Figure 2. The first distinction between plastic and the background was best achieved through including the part of the spectra show-
ing the first overtone of the CH-stretch of the polymers,15 as illustrated by the dotted box in the figure. This area showed a pronounced 
peak and gave a spectral fingerprint for each of the tested polymers. Once the background was removed the particle identification was 
improved if a wider wavelength span was included as illustrated by the full-line box in the figure.
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Hyperspectral imaging techniques
The Videometer showed promise for distinguishing between 
different polymer types when applied on reference plastics, as 
it separated the different polymer types in different clusters. It 
also had the benefit of adding a high resolution to the images. 
The spectral information with 19 wavelengths 375–970 nm 
(Figure 5) was, however, too limited for creating a model able 
to distinguish between the reference plastics when mixed, and 
also for household plastics. Much of the interesting informa-
tion is above 1000 nm.

Measurements of reference plastic material showed good 
result for the Malvern and the Umbio Inspector (Figure 5). 
The Malvern measured 119 wavelengths and therefore gave a 
significantly higher spectral resolution than the Videometer, 
which facilitated polymer identification. It showed clear 
distinction in the PCA plot and good classification based on 
the second overtone of the C–H and the first combination 
overtone.

The Umbio Inspector showed both the second and the 
first overtone of the C–H as well as the combination band 
and the first overtone of the combination band. The first 
overtone and the combination band have a stronger signal 
and are therefore appropriate for analysing samples that are 
expected to show a higher degree of degradation than the 
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Figure 4 Obtained polyethylene spectra from 
reference plastic, household plastic and 
plastic samples from sea filtrate.  

Figure 4. Obtained polyethylene spectra from reference plastic, 
household plastic and plastic samples from sea filtrate.
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Figure 3. Reference plastic on a 
metal grid seen as a RGB image 
in figure 3A obtained from a 
Malvern scan. 
Although the metal grid disturbs 
the signal through causing 
reflections, a rough distinction 
between background and plastic 
can easily be made in the PCA 
plot in 3B as marked by the 
black circle. 
When the PCA contour plot (3C) 
is plotted for the first component 
the plastic pieces stand out 
against the background.  
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Figure 3. Reference plastic on a metal grid seen as a RGB 
image in 3A obtained from a Malvern scan. Although the metal 
grid disturbs the signal through causing reflections, a rough 
distinction between background and plastic can easily be made 
in the PCA plot in 3B as marked by the black circle. When the 
PCA contour plot (3C) is plotted for the first component the 
plastic pieces stand out against the background.
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Particle counts using hyperspectral imaging analysis

Sample  
number

Visual  
counts

Particles  
identified as plastic

% Increase compared to  
visual analysis

Particles identified 
to polymer type

% Increase compared 
to visual analysis

1 1 3 200 2 100

2 4 7 75 5 25

3 7 8 14 8 14

4 18 19 6 15 –17

5 5 6 20 1 –80

6 5 7 40 4 –20

7 3 3 0 3 0

8 6 6 0 6 0

9 0 2 200 2 200
10 1 2 100 1 0

Table 4. Summary of the 10 samples that were investigated with visual and hyperspectral image analysis. An average increase of 65% in 
particle recognition was achieved with hyperspectral image analysis. When only particles that could be identified as a specific polymer was 
included a 22% increase compared to visual analysis was still achieved. Of those, 74% were polyethylene, 21% were polypropylene and 4% 
were polystyrene.
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Figure 5. Spectra of polyethylene from the three different techniques presented next to the PCA plot 
of 10 of the different reference plastics. The plots show an increasing level of separation as the 
spectral resolution and span increases. 
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Figure 5. Spectra of polyethylene from the three different techniques presented next to the PCA plot of 10 of the different reference 
plastics. The plots show an increasing level of separation as the spectral resolution and span increases.
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reference material. Additionally the Umbio Inspector showed 
the fastest image acquisition. The image resolution on the 
other hand was not as high as with the Videometer, but due 
to the high spectral resolution and interchangeable lenses 
an adequate resolution to analyse particles of 300 µm was 
obtained.

Data handling and pre-processing
Analysis was performed through a multi-image import with 
the reference plastic. As a first step, for an easier removal of 
the background, only the first overtones of the C–H stretches 
were included in the analysis. This area (Figure 2) showed 
pronounced peaks for all reference plastics and was less 
perturbed by degradation (Figure 4).

Different correctional tools can also be used, such as MSC, 
to decrease the baseline shifts and slope variations between 
reference plastic and environmental samples.12

Once the background has been removed, the wavelength 
scope should be widened to include the second overtone of 
C–H and the first overtone of C–H combination band15 (Figure 
2). This facilitates polymer identification through cluster 
formation with the respective reference plastic.

Data handling of spectroscopic imaging has been acknowl-
edged as one of the main problems with the technique.16 The 
software and techniques used in this article provides the 
possibility to work simultaneously with several aspects of the 
data while maintaining an overview.

Conclusions
Hyperspectral imaging techniques can be a useful comple-
ment for monitoring purposes. These techniques can 
provide an objective and comparable analysis of microplas-
tics in environmental samples. Additionally they provide 
compositional information through polymer identification. 
Comparisons with visual identifications also showed that the 
technique can identify particles that were not visually identi-
fied as plastic; hence the method reduces the risk of under-
estimating certain types of microplastics. The increased 
objectivity achieved with the method could improve spatial 
and temporal comparisons between results from different 
research groups; this has previously been complicated due 
to the discrepancy observed between visual identifications. 
It was, however, shown that certain aspects such as the 
spectral effects of polymer degradation have to be taken into 
account when calculating prediction models. It is suggested 
that these techniques are initially used complementary to 
the traditional visual methods, to further assess possibilities 
and limitations in different types of samples. Of the three 
hyperspectral instruments tested, the Videometer showed 
very high spatial resolution, but less clear discrimination 
between plastic types. Both the other instruments, Malvern 
and Umbio Inspector, had a lower spatial resolution but a 
better potential for plastic discrimination and identification 
due to their higher spectral resolution.
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