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A B S T R A C T   

To reduce microplastic contamination in the environment, we need to better understand its sources and transit, 
especially from land to sea. This study examines microplastic contamination in Jakarta’s nine river outlets. 
Microplastics were found in all sampling intervals and areas, ranging from 4.29 to 23.49 particles m− 3. The trend 
of microplastic contamination tends to increase as the anthropogenic activity towards Jakarta Bay from the 
eastern side of the bay. Our study found a link between rainfall and the abundance of microplastic particles in all 
river outlets studied. This investigation found polyethylene, polystyrene, and polypropylene in large proportion 
due to their widespread use in normal daily life and industrial applications. Our research observed an increase in 
microplastic fibers made of polypropylene over time. We suspect a relationship between COVID-19 PPE waste 
and microplastic shift in our study area. More research is needed to establish how and where microplastics enter 
rivers.   

1. Introduction 

Plastic is one of the most successful industrial materials ever inven-
ted. Plastic is relatively inexpensive, easy to make, versatile, and 
impermeable to water, making these materials ideal for a wide range of 
applications (Hopewell et al., 2009). Plastic manufacturing has reached 

an estimated 8.3 billion metric tons, and it is growing faster than any 
other synthetic material except cement and steel (Geyer et al., 2017). 
There has been an increase in the amount of plastic produced; Plas-
ticsEurope and EPRO (2021) suggests that 367 Million tonnes of plastic 
were being produced in 2021, an increase of 32 Million tonnes from 
2016. However, the usage of plastics has several negative environmental 
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consequences due to their manufacture and inefficient waste manage-
ment. The entire volume of collected plastic waste is expected to be only 
between 45 and 50 % of total consumption (Frost and Sullivan, 2021). 
Moreover, current recycled plastics make up <10 % of the global plastics 
market, and recycling rates are reported to be <20 % globally, with a 
significant variance within nations (OECD, 2018). As a result, a signif-
icant amount of plastic waste ends up in the environment. 

Plastic pollution is becoming a worldwide issue, with an increase in 
its prevalence across all ecosystems, particularly in the oceans. 
Numerous studies have demonstrated that plastic waste have a harmful 
impact on the environment (Araújo and Costa, 2019; Barnes et al., 2009; 
Cordova, 2020; Derraik, 2002; Gall and Thompson, 2015; Horton et al., 
2018; Omeyer et al., 2022). Besides the direct ingestibility dangers, all 
plastic waste increases the likelihood that harmful compounds will be 
discharged into the environment and end up in trophic-level (Bouw-
meester et al., 2015; Gallo et al., 2018; Häder et al., 2020; Hahladakis 
et al., 2018; Teuten et al., 2009; vom Saal and Hughes, 2005). One 
significant issue is that larger plastic objects can fragment into smaller 
ones (Duis and Coors, 2016; GESAMP, 2015; Koelmans et al., 2017; 
Thompson et al., 2004). Microplastics are formed as a result of various 
processes and are derived from a variety of sources with a length of <5 
mm (Arthur et al., 2009; Thompson et al., 2004). Microplastics are 
derived from two major sources, i.e., primary and secondary. Primary 
sources are small-sized plastics such as pellets and microbeads that are 
manufactured from the origin (De Falco et al., 2019; GESAMP, 2015), 
whereas secondary sources are larger-sized plastics that are fragmented 
in nature (Andrady, 2017; Sundt et al., 2014). 

Microplastics have been detected in a wide variety of foods and 
beverages (Diaz-Basantes et al., 2020; Van Raamsdonk et al., 2020; 
Weber et al., 2021) and nearly every ecosystem in the world (Cordova 
et al., 2022; Ding et al., 2019; He et al., 2021; Isobe et al., 2021; Jiao 
et al., 2022; Qi et al., 2022; Simon-Sánchez et al., 2019); as a result, 
microplastics have been found in animals (Iwalaye et al., 2020; Mohsen 
et al., 2019; Naidoo et al., 2020; Walkinshaw et al., 2020), plants 
(Huang et al., 2022; Yin et al., 2021; Yu et al., 2021), and humans 
(Ragusa et al., 2021; Schwabl et al., 2019). Although microplastics have 
distinct physical properties (Miller et al., 2021), their widespread exis-
tence may pose a threat to organisms through a variety of routes, 
including inhalation (Amato-Lourenço et al., 2020; Baensch-Baltruschat 
et al., 2020), ingestion (Bulleri et al., 2021; Naidoo et al., 2020), bio-
accumulation (Sfriso et al., 2020; Van Raamsdonk et al., 2020), and the 
process of biomagnification (Krause et al., 2021; Saley et al., 2019; 
Walkinshaw et al., 2020). These tiny plastic particles can adsorb other 
toxic contaminants (Khalid et al., 2021; Liu et al., 2022) and attachment 
media for alien species and pathogens (Feng et al., 2020; Naik et al., 
2019). Moreover, microplastics can also release certain additive mate-
rials (Celino-Brady et al., 2021; Herrera et al., 2022). Microplastics may 
pose a risk to human health because they can migrate through the food 
supply chain (Hartmann et al., 2019; Wright and Kelly, 2017). Thus, it is 
vital to understand microplastics’ prevalence, behavior, and fate in 
natural ecosystems. 

Microplastics research, particularly ecological dynamics, has grown 
at an exponential rate since the term was first used, and it has received 
extensive attention for more than a decade (Sutherland et al., 2019). 
However, there is still a lack of knowledge on the composition, primary 
sources, and ecological significance of microplastics found in freshwater 
ecosystems (e.g., rivers) specifically urban rivers. It is strongly presumed 
that rivers are major transporters of microplastics; therefore, it is critical 
to understand plastic’s fate in the aquatic environment. Up to this point, 
only six Indonesian freshwater microplastic investigations have been 
completed, one river on Sumatera island and five rivers on Java island 
(Cordova et al., 2022; Sulistyowati et al., 2022). Baseline data on 
microplastics is critical for environmental management in Indonesia 
(Riani and Cordova, 2022), particularly in light of the probability of an 
increase in microplastics in the aquatic environment as a result of the 
usage of Personal Protective Equipment (PPE) in response to the COVID- 

19 pandemic (Hu et al., 2022; Ray et al., 2022). Consequently, it is 
imperative that we expand our understanding of urban river pollutant 
microplastics and develop effective ways and strategies to alleviate the 
conflicting effects of microplastic pollution on the ecosystem and human 
health. 

Thus, the purpose of this study was to determine the seasonal vari-
ation in the number and type of polymers detected in the surface water 
of nine urban rivers. Additionally, we sought to determine the most 
prevalent polymers in order to ascertain which sources of plastic are 
creating the most microplastic pollution in these regions. Due to human 
involvement, we hypothesized that the east side of the greater Jakarta 
area would have a much higher abundance of microplastics than the 
west due to increased anthropogenic activities. Additionally, we hy-
pothesized a correlation between high rainfall and microplastics. 
Additionally, it was hypothesized that an increase in microplastics was 
caused by PPE use during the pandemic. This investigation may produce 
a comprehensive report on microplastic contamination in the nine river 
outflows to Jakarta Bay, which may improve the management and 
prevention of microplastic contamination in freshwater towards marine 
ecosystems. 

2. Method 

2.1. Study area 

Jakarta Bay spans 514 km2 and boasts a coastline of around 72 km. 
The Jakarta Bay is an estuary formed by multiple rivers that run through 
the Greater Jakarta area, including Jakarta, Bogor, Depok, Tangerang, 
and Bekasi. Tangerang’s Cisadane River estuary forms the eastern 
border of Jakarta Bay, while Bekasi’s Citarum River forms the western 
border. Jakarta Bay supports the activities of Greater Jakarta’s 33 
million inhabitants. The existence of densely inhabited areas, industry, 
fisheries, international ports, commerce, and terrain changes along the 
Jakarta Bay shoreline contribute to the growing environmental load. 
Between 2010 and 2018, the coastline of Jakarta Bay changed by 
5.2–30.1 ha and 100.2 ha, respectively, due to sedimentation and land 
reclamation. Land reclamation is also predicted to alter coastal currents, 
lowering the pollution that enters Jakarta Bay’s natural flushing ability 
towards the Java Sea. 

2.2. Sampling methods 

On a quarterly basis, from March 2020 to December 2020, we 
sampled the microplastics entering Jakarta Bay from Greater Jakarta’s 
nine river outlets (Fig. 1), which are part of three different administra-
tive areas. Seven river outlets (Angke, Pluit, Ciliwung, Kali Item, Koja, 
Cilincing and Marunda River) located in Jakarta, one river each in 
Tangerang (Dadap River) and Bekasi (Bekasi River), respectively. 

The sampling method for microplastics in Greater Jakarta’s nine 
river outlets was following with earlier research (Cordova et al., 2020; 
Herrera et al., 2020; Pan et al., 2019; Suteja et al., 2021). Microplastic 
sampling in water was carried out using a mini manta trawl net (mesh 
size 200 μm, net length 1.5 m, rectangular opening area 450 cm2) pro-
vided with a flowmeter (Hydro-Bios, model 438–115) set in the open-
ing’s center. We collected samples from each river by lowering a manta 
net from the last bridges prior to the river mouth. We collected samples 
from the same sampling station throughout the sampling campaign. We 
took samples from three distinct sampling points (on the river’s left, 
middle, and right sides). The manta trawl was installed opposite the 
river flow at low tide (Table S1), with five repetitions lasting 20 min. 
Manta trawl net installation should be <60 min to avoid clogging the net 
with organic and suspended material, which may account for the low 
level of microplastic obtained (Tamminga et al., 2018). Following the 
pulling, the mini manta trawl net was carefully cleaned with riverine 
water from the outside and Double Distillate Deionized Water (DDDW) 
from inside to ensure that all microplastics settled into the cod-end 
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bucket. 
The samples were filtered using two stages of steel sieve (3-inch Ø) 

with mesh sizes of 5000 μm and 200 μm. The samples were transferred 
carefully to a sterile petri dish using a tweezer, a dropper, and a glass 
spatula taking care not to overfill the petri dish with water. For labo-
ratory examination, the petri dishes were sealed with ParaFilm® sealing 
film and stored at 4 ± 2 ◦C for further analysis. 

2.3. Sample treatment and microplastics identification 

Microplastics were extracted from aqueous samples using a previ-
ously documented process (Falahudin et al., 2020; GESAMP, 2019; 
Lusher et al., 2017b; Masura et al., 2015; Michida et al., 2019; Nurha-
sanah et al., 2021; Sulistyowati et al., 2022), that involved mixing ma-
terials with high-density solvents for density separation protocols and 
biological digestion operations. Briefly, samples of filtered water were 

dried for 72–96 h at 50 ◦C before being treated with a highly saturated 
NaCl solution (1.2 g cm− 3). It was necessary to repeat the separation 
process six times (please see QA/QC section for microplastic recovery 
test) due to the possibility of variation in the extraction of high-density 
microplastics when NaCl is used (Cutroneo et al., 2021; Li et al., 2019). 
A 50 ml Pyrex test tube was filled with the samples, then dried in an oven 
at 50 ◦C for 48 h within sterile conditions. Fenton reagent, prepared 
from 30 % H2O2 (20 ml, Merck Millipore, Emprove® Essential, Ph Eur, 
BP, USP) and Fe(II)SO4 (10 ml, 10 mg/ml, Merck Millipore, EMSURE® 
ACS, ISO, Reag. Ph Eur) was added to the test tube. Afterwards, we 
heated the test tube in a water bath at 50 ◦C for 48 to 72 h. The samples 
were then subjected to gridded filter paper (Merck Whatman™ cellulose 
nitrate, sterile, diameter 47 mm and pore size 0.45 μm) for identification 
and characterization examination. 

A microscope (Nikon Eclipse Ni–U) with a camera (Nikon DS-L4) 
was used to observe the filter paper membrane. We identified 

Fig. 1. Microplastics sampling location in river outlet to Jakarta Bay.  
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suspected microplastics using previously developed identification 
methods (Cordova et al., 2019; Lares et al., 2019; Mohamed Nor and 
Obbard, 2014), recorded shape, size and images shortly after their 
presence. The particle was identified using the following criteria: uni-
form color, lack of organic or cellular features, and lack of segmentation 
(Cole et al., 2013; Cordova et al., 2020; Hidalgo-Ruz et al., 2012). 

Finally, a representative suspected microplastics (35.06 %, 162 out 
of 462 particles) was chosen from the samples, and its chemical struc-
ture was determined using an Attenuated Total Reflectance - Fourier 
Transform Infrared Spectrometer (ATR-FTIR, diamond crystal material, 
Thermo Fisher Scientific Nicolet™ iS5 with OMNIC™ FTIR Software). 
The FTIR was adjusted to a 4 cm− 1 resolution with 32 scans and in the 
band region spectrum range of 650–3000 cm− 1. According to previous 
studies (Andreassen, 1999; Cordova et al., 2019; Crawford and Quinn, 
2017; Käppler et al., 2015; Kotha and Shirbhate, 2015; Löder and 
Gerdts, 2015; Tagg et al., 2015), polymers were identified by investi-
gating the existence of a significant peak in band regions (Andreassen, 
1999; Käppler et al., 2016, 2015; Löder et al., 2015) at 1174–1087 cm− 1 

(stretching vibration of CF2), 1400–1480 cm− 1 (bending vibration of 
CH2), 1670–1760 cm− 1 (stretching vibration of C––O), 1740–1800 cm− 1 

(stretching vibration of C––O), and at 2780–2980 cm− 1 (stretching vi-
brations of CH/CH2/CH3 groups). 

2.4. Quality assurance and quality control (QA/QC) 

To avoid cross - contamination throughout sampling, the manta 
trawl was cleaned three times with river water and three times with 
DDDW before the next sampling. DDDW was used to rinse the sieve in a 
clean beaker glass wrapped in aluminum foil. To minimize sampling and 
analytical mistakes, a blank sample approach was designed to estimate 
the amount of contamination introduced during the experiment. 
Microplastic contamination was determined to be absent from the blank 
samples. Additionally, we wore 100 % cotton clothing and used glass 
laboratory supplies, immediately wrapping materials following treat-
ments and rinsing and sanitizing all instruments prior to doing labora-
tory analyses in the laboratory. All chemical solutions were filtered via 
sterile filter paper to remove any remaining microparticles. 

Microplastic recovery tests were performed on several commonly 
used polymers (PlasticsEurope, 2020). Nine different polymers (i.e., 
high-density polyethylene, low-density polyethylene, polyamide, poly-
urethane, polystyrene, polypropylene, polyvinyl chloride, acrylonitrile 
butadiene styrene, and styrene-acrylonitrile resin) ranging in size from 
400 μm to 1000 μm, were added to pure water (Milli-Q®) and 6 mg/l 
Now Solution® Red Clay Powder (the average total suspended solid 

content in Jakarta Bay, Koagouw et al., 2021). A density separation 
approach with highly saturated NaCl and a biological digestion protocol 
(with Fenton reagent) were used to complete the recovery process. For 
three repetitions of the density separation procedure combined with one 
iteration of the biological digestion treatment, the overall recovery rate 
is 90.91 %. By comparison, the recovery rate for six repetitions of the 
density separation procedure followed by one iteration of the biological 
digestion treatment was 100 %. 

2.5. Statistical analyses 

PAST4 software (version 4.0.3) was used to conduct statistical 
analysis and create graph plots. The link between rainfall (Table S2) and 
variance in microplastic abundance was examined using linear regres-
sion analysis (Fig. S1). At a p-value of 0.05, statistical tests were 
considered significant. 

3. Result 

Microplastics were discovered in each sampling interval and 
throughout the entire sampling area. (Fig. 2). The abundance of 
microplastic in the nine rivers outlet to Jakarta ranged from 4.29 to 
23.49 particles m− 3, with an average (± standard deviation) of 9.02 ±
4.68 particles m− 3. The highest microplastic abundance was 9.80 ± 4.79 
particles m− 3 in March 2020, while the lowest was 8.01 ± 4.82 particles 
m− 3 in September 2020. As illustrated in Fig. 2A, the number of 
microplastics varied by season. Microplastics were more abundant 
throughout the rainy season (March 2020 and December 2020) than 
during the dry season (June 2020 and September 2020). However, we 
found no significant difference in microplastic abundance between 
sampling times (p = 0.2868). Moreover, the linear regression analysis 
revealed a strong relationship between variance in microplastic con-
centration and 14 days of average rainfall before sampling time (R2 =

0.8241, p < 0.001). 
As illustrated in Fig. 2B, all sampling locations contained micro-

plastics, indicating that the pattern of microplastic pollution tends to 
increase towards the eastern part of the estuary flow towards Jakarta 
Bay. We found the highest amount of microplastic particles from nine 
rivers outlet to Jakarta Bay were in the Marunda River and the Bekasi 
River outlet with the average number of microplastic particles m− 3 

varying from 15.49 ± 4.28 and 15.97 ± 6.05, respectively. In our study, 
the Cilincing river and Dadap river outlets rank third and fourth with an 
average number of microplastic particles of 10.88 ± 2.79 and 7.16 ±
1.76 particles m− 3. Four river outlets in the middle of north Jakarta 

Fig. 2. Spatiotemporal microplastics abundance in nine rivers outlet to Jakarta Bay.  
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(Pluit, Ciliwung Ancol, Kali Item, and Koja) had an abundance of 
microplastics varied from 6.18 ± 1.98, 6.05 ± 0.85, 6.51 ± 2.11, and 
7.04 ± 1.51 particles m− 3, respectively. Lastly, the Angke River outlet 
samples had the least abundance of microplastic particles (5.94 ± 0.69 
particles m− 3). There were significant differences in microplastic 
abundance between Cilincing, Marunda, and the Bekasi River outlet 
(Kruskal-Wallis’s test p < 0.001; Dunn’s Post Hoc p < 0.05) compared to 
other sampling locations. 

We classified microplastics into four shape categories based on their 
morphological properties, i.e., fragment, foam, fiber, and granule, and 
their percentages are presented in Fig. 3. In general, fragments (49.20 % 
with average 4.44 ± 3.37 particles m− 3) predominated in all nine river 
outflows, followed by foam (29.22 %, 2.64 ± 2.13 particles m− 3), fiber 
(19.02 %, 1.72 ± 1.29 particles m− 3), and granule (2.56 %, 0.23 ± 0.57 
particles m− 3). At each location, the shape distribution is highly het-
erogeneous. Fragment, foam, and fiber are abundant at all sites, whereas 
granules are discovered only at the Cilincing, Marunda, and Bekasi River 
outlets. There were significant differences in this study between the 
types of microplastics, specifically between fragments with fibers and 
granules and between foam and granules (Kruskal-Wallis’s test, p <
0.001; Dunn’s Post Hoc, p < 0.05). 

The intriguing finding in our research is that fiber shape grew from 
3.33 % (0.37 ± 0. 47 particles m− 3) in March 2020 to 15.48 % (1.48 ± 0. 
73 particles m− 3) in June 2020, then increased again by 24.42 % (2.02 
± 0.94 particles m− 3) in September 2020 until December 2020, when it 
reached 29.46 % (2.99 ± 1.11 particles m− 3). Fig. 4 shows fiber shape 
increase in all research locations, particularly in the Jakarta adminis-
trative area (Angke to Marunda). The distribution of fragments and 
foam, on the other hand, is about constant throughout all study 
locations. 

According to the size of the microplastics, we divided them into four 
categories, e.g., 300–500 μm, 500–1000 μm, and > 1000 μm (Figs. 3 and 
4). 46.54 % of the samples contained microplastics with a size of 
500–1000 μm (average of 4.20 ± 2.77 particles m− 3), followed by larger 
size (>1000 μm; 33.15 %, 2.99 ± 2.90 particles m− 3) and smaller 
(300–500 μm; 18.07 %, 1.63 ± 1.45 particles m− 3) microplastics, and <
300 μm microplastics (lower limit of 226 μm), which made up the rest 
(2.24 %, 0.20 ± 0.41 particles m− 3). In comparison to large-scale 
microplastic debris (>1000 μm), the fraction of small-scale micro-
plastic debris (<1000 μm) was significantly high. Microplastics with a 
size of <1000 μm were the most abundant (>66 %) over the majority of 
this investigation’s duration. There were significant differences across 
sizes in this study, notably between 500 and 1000 μm and > 1000 μm 

(Kruskal-Wallis’s test, p < 0.001; Dunn’s Post Hoc, p < 0.05). 
The pattern of seasonal variation in microplastic size did not alter 

substantially (Fig. 4). However, the pattern tended to decrease (not 
significant, Kruskal-Wallis test p = 0.2775) for sizes <300 μm. For sizes 
300–500 μm, the abundance of microplastics was higher in March and 
September (~26 % proportion) and declined in June and December 
2020 (proportion of 11.90 % and 7.14 %, respectively). The pattern was 
similar for 500–1000 μm microplastics, relatively lower in June and 
December 2020 (~41 %) and comparatively high in March and 
September 2020 (with ~51 % proportion). Different patterns were 
discovered in >1000 μm size microplastics. In March and September 
2020, the proportion of abundance of microplastics was lower (18–19 
%) than in June and September 2020, with the proportions of 44.05 % 
and 50.00 %, respectively. 

FTIR spectroscopy determined the chemical composition for 162 of 
the detected microplastic particles (35.06 % of the total recovered 
particles). We randomly select particles with a uniform shape and size 
distribution across all samples. All 162 particles were identified as being 
made of a synthetic polymer. We identified nine different forms of 
microplastic polymers (Table 1 and Fig. 5). Polypropylene (36.42 %), 
polyethylene (21.60 %), and polystyrene (13.58 %) dominated the 
chemical composition analyses, accounting for 71.60 % of total micro-
plastics. The remaining polymers (28.40 %) included polyvinyl chloride 
(9.26 %), polybutadiene (6.17 %), polyurethanes (4.32 %), polyethylene 
terephthalate (3.09 %), nylon 6 and 9 (5.56 %). We also investigated the 
chemical composition of fiber-type microplastics in this study because 
their number expanded from the beginning till the end of the study. We 
discovered 40 fiber particles, four of which were nylon-6 and nylon-9, 
from the March 2020 sampling time. While 31 fiber particles were 
determined to be polypropylene and 5 to be polyethylene. The 36 fiber 
particles were obtained from June, September, and December 2020 
sampling periods. 

4. Discussion 

Rivers are a significant source of plastic pollution in the world’s seas, 
and the amount of plastic in the water varies according to human ac-
tivities in river basins (Cordova et al., 2022; Cordova and Nurhati, 2019; 
Kapp and Yeatman, 2018; Kataoka et al., 2019). Microplastics were 
detected in every surface water sample taken from nine river outlets, 
which is unsurprising given their pervasive distribution (Horton et al., 
2018; Horton and Dixon, 2018). Our investigations of microplastic 
pollutant emissions in nine rivers that flow into Jakarta Bay reveal a 

Fig. 3. Seasonal microplastics characteristics, by shape (left) and size (right), in nine rivers outlet to Jakarta Bay.  
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reasonably low level of microplastic pollution in the water from these 
areas. In Table 2, we compare our findings to those of other river outlets 
using a similar approach, including identification of the chemical 
composition of the particles using FTIR or Raman spectroscopy. It is 
difficult to directly compare the abundance of microplastics in Table 2 
due to the varied sampling techniques employed. Previous research has 
evaluated various sample techniques for microplastic analysis, which 
may result in differences in microplastic abundances of orders of 
magnitude (Zheng et al., 2021). This comparison enables us to conclude 
that the nine rivers that flow into Jakarta Bay are polluted with 
microplastics, albeit to a lesser extent than other regions’ river outflows. 
However, microplastic pollution entering Jakarta Bay on a daily basis 
will result in microplastics being carried and accumulating into Java’s 
north shore and Sumatra’s south coast as a result of microplastic 
pollution. As a result of the marine litter pathway model developed by 
Iskandar et al. (2021), microplastics are technically possible to be 
transported and aggregated throughout the Indian Ocean region. 

Our research demonstrates a positive association between rainfall 
and the abundance of microplastic particles observed in all rivers tested. 
Multiple other studies have identified a correlation between an increase 
in rainfall and an increase in microplastic particles in rivers, including 
the Tamsui River in Taiwan (Wong et al., 2020), the Goiana estuary in 
Brazil (Lima et al., 2015), the Los Angeles River in the United States of 
America (Moore et al., 2011), the Seine River in France (Dris et al., 
2015), the Levantine coast in Turkey (Gündoğdu et al., 2018), the 

Venoge River in Switzerland (Faure et al., 2015), and the Lake Donghu 
in China (Xia et al., 2020). Hydrological processes in a river system 
convey runoff from rainfall (Mamo et al., 2019; Wang et al., 2017). 
During the dry season, when river discharge is reduced, microplastics 
are deposited in sediments and riverbanks; however, during the rainy 
season, when rainfall is abundant, the deposited and deposited micro-
plastics are reactivated, leading to a high abundance of microplastic in 
the river (Hurley et al., 2018). According to multiple studies, micro-
plastics can also originate from land-atmosphere interactions (Cai et al., 
2017; Dris et al., 2016; Enyoh et al., 2019; Purwiyanto et al., 2022; 
Wright et al., 2020), and have a positive correlation with precipitation 
(Allen et al., 2019; Ganguly and Ariya, 2019; Purwiyanto et al., 2022). 
This allows microplastics in rivers to also originate from airborne 
microplastics. The limitations of our study include the small number of 
samples collected per time unit, which means they are not completely 
representative of the system, and the correlation is very likely to un-
derestimate the quantity of microplastic contamination. We urge that 
high-frequency samples be collected in transects across rivers to ensure 
that the results are reliable and persuasive. 

We discovered microplastic particles in variable levels in all river 
outlets and examined samples. This result implies widespread micro-
plastic pollution in the catchment areas of all rivers in our research area, 
which is consistent with previous findings (Constant et al., 2020; Niz-
zetto et al., 2016; Su et al., 2020). Non-point and point sources of 
microplastic pollution can contribute to the problem (Siegfried et al., 
2017). Human activities have been identified as a major source of 
microplastics in aquatic habitats in the research area (Eriksen et al., 
2013). The statistical analysis findings revealed that the number of 
microplastic particles in the analyzed rivers varies depending on loca-
tion, with the highest concentrations found in the east part of the North 
Jakarta coastline area. This study’s findings align with those of Wang 
et al. (2017), who found a link between population density and the 
abundance of microplastics. A large abundance of microplastics in the 
environment may be linked to poor water quality caused by certain 
economic activities (Browne et al., 2011; Zhao et al., 2015). Given that 
each location in our study has a unique catchment area, this is to be 
expected. Land use and population density within the catchment areas 
may have a role to play in the differences in microplastic particle 
abundance found in different rivers (Huang et al., 2021; Karlsson et al., 

Fig. 4. Spatiotemporal microplastics characteristics, by shape (top) and size (bottom), in nine rivers outlet to Jakarta Bay.  

Table 1 
Chemical composition from recovered microplastics in nine rivers outlet to 
Jakarta Bay.  

No Polymer types Total samples % 

1 Nylon 6 and 9  9  5.56 
2 Poly vinyl chloride  15  9.26 
3 Polybutadiene  10  6.17 
4 Polyethylene  35  21.60 
5 Polypropylene  59  36.42 
6 Polystyrene  22  13.58 
7 Polyurethanes  7  4.32 
8 Polyethylene terephthalate  5  3.09 
Total  162  100  
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2018; Lozoya et al., 2016; Mani et al., 2015). Our findings indicate that 
the east part of the North Jakarta coastal area has a higher abundance of 
microplastic particles than the west part of the area (Cordova et al., 
2021c, 2020). A similar pattern can be observed in the proportional 
increase in the number of enterprises and industrial parks (including 
Tanjung Priok port, Indonesia’s biggest and busiest port), higher in the 
eastern catchment region than in the western catchment area of Northen 
Jakarta’s catchment area (Cordova et al., 2020). This study’s lowest 
abundance of microplastic occurred at the Angke river outlet, a relic of 
Jakarta Bay’s mangrove forests. This result is consistent with the study 
findings that the mangrove ecosystem is a sink for microplastics (Jiao 
et al., 2022; Li et al., 2022). Martin et al. (2019) indicated that the 
developed root system and high net primary productivity contributed 
significantly to the trapping of riverine plastic litter. However, some 
other research suggests that hydrodynamic factors primarily determine 
the blocking of small particles (Zhang et al., 2020). This means that no 
definitive conclusions can be drawn about what factors had the most 
significant influence on intercept rates. Our research confirmed that 
human activities cause plastic contamination in freshwater systems, 
ultimately ending up in the ocean. 

Microplastics’ shape properties, size distribution, and chemical 
composition have been proposed as associative links for source identi-
fication (Auta et al., 2017). As a source of fragments and foam, sec-
ondary microplastic is commonly used in various applications, including 
packaging, disposable food and beverage containers, insulation, cush-
ions, and other materials (Andrady, 2017; Lehtiniemi et al., 2018; 
Nurhasanah et al., 2021; Sulistyowati et al., 2022). These plastics, which 
are often single use, are brittle and have a low fracture resistance (Jin 
et al., 2019). After being abandoned and exposed to the environment, 
these forms of plastic are at a higher hazard of rapidly deteriorating into 
little particles of plastic waste (Cordova et al., 2021b, 2020; Falahudin 
et al., 2020). Moreover, the fraction of large-sized microplastics with a 
size of 500-1000 μm and > 1000 μm was considerable (79.69 %). The 
predominance of somewhat large microplastics implies that the level of 

weathering for plastic litter was similarly high (Cooper and Corcoran, 
2010; Zbyszewski and Corcoran, 2011). Due to the weathering of plastic 
wastes and subsequent transportation into rivers via surface runoff, 
plastic litter may have degraded in the rivers (Chubarenko et al., 2018; 
Song et al., 2017), that flowed into Jakarta Bay. This finding emphasizes 
the critical nature of keeping larger bits of plastic from deteriorating 
once they reach the environment. The significant quantities of poly-
ethylene, polystyrene, and polypropylene (almost two-thirds) discov-
ered in this study were attributed to their ubiquitous use in everyday life 
and industrial operations (Au et al., 2017; Hahladakis et al., 2018). The 
three leading polymers accounted for more than half of global plastic 
consumption (PlasticsEurope, 2020; Stachowitsch, 2019). These three 
major synthetic polymer groups are used in plastic manufacture, and 
their copolymers are widely used in various applications, including 
packaging, various disposable dinnerware, textiles, and fishing equip-
ment (Cordova et al., 2021c; Fotopoulou and Karapanagioti, 2015; Fries 
et al., 2013; Xiong et al., 2018; Zhang et al., 2019). 

Our investigation found that the amount of microplastics in the 
shape of fibers has increased over time. The increase in the proportion 
from 3.33 % in March 2020 to nearly 30 % in December 2020 demon-
strates that secondary plastic comes from a different source. We presume 
a linkage between COVID-19 waste, i.e., PPE, particularly face masks 
and the increase of microplastics in our research area. This result is 
consistent with Cordova et al. (2021a) findings that face mask waste 
accounted for 9.83 % of all riverine debris in Jakarta discovered in 
March 2020. Polypropylene is the primary polymer used in the medical 
mask (Chen et al., 2021; De-la-Torre et al., 2022; Fadare and Okoffo, 
2020; Rathinamoorthy and Balasaraswathi, 2022). The chemical 
composition of fiber-shaped microplastics in March 2020 was deter-
mined to be nylon 6 and 9, which are commonly used in fisheries in-
dustry (De Witte et al., 2014; Lusher et al., 2017a; Silva-Cavalcanti et al., 
2017; Sulistyowati et al., 2022). Interestingly, the chemical composition 
of the fiber-shaped microplastic identified during three consecutive 
sampling periods (June, September, and December 2020) was 

Fig. 5. Identification of microplastic polymer types using FTIR spectra analysis.  
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polypropylene. Indonesia began implementing a partial lockdown and 
the requirement to wear masks when going out in public during these 
three sampling periods; however, management is still inefficient, 
resulting in a significant amount of mask waste being scattered in the 
environment (Cordova et al., 2021a). After being retrieved from the 
environment, polypropylene surgical face masks showed considerable 
crystallinity loss and rupture of their fibrous microstructure (De-la-Torre 
et al., 2022). Photooxidation of polypropylene causes it to become 
embrittled, resulting in fragmentation and the generation of micro-
plastics (Fayolle et al., 2000; Forero-López et al., 2021). Shen et al. 
(2021) states that after two months of exposure to the environment, the 
masks degrade into extremely delicate fragments and microplastics. 
Microplastics emitted from UV-irradiated masks in an aquatic environ-
ment with constant agitation have been estimated to reach hundreds of 
thousands of particles per mask (Morgana et al., 2021; Rathinamoorthy 
and Balasaraswathi, 2022; Saliu et al., 2021). However, our research on 

the abundance of microplastics is still in its earliest stages. Additional 
research is required to determine how the mask fragments as a result of 
exposure to UV radiation, heat, the effect of hydrodynamic activity, and 
waves. A previous study indicates that masks discarded on the beach 
degrade fully into microscopic fiber particles and aggregates in less than 
two years, while additional research on a longer timescale is required to 
test this assumption (Saliu et al., 2021). Another factor to consider in the 
future is the type of microplastic fiber that results from the fragmenta-
tion of the mask. If not adequately handled, this form of microplastic 
fiber would raise environmental pressure and jeopardize the environ-
ment. As a result, strict legislation, public education, and campaigns are 
necessary to promote correct disposal methods and systemic changes in 
plastic waste management, particularly single-use plastics. Additionally, 
additional research is necessary to determine how these microplastics 
particles infiltrate the aquatic ecosystem and their sources, including 
residential, industry, agricultural runoff, and other potential 

Table 2 
The abundance of microplastics found in this study compared to other river areas.  

Sampling location Riverine outlet area River length 
(km) 

Microplastic abundance 
(particles m− 3) 

Size range 
(μm) 

Sampling method Sampling 
depth (cm) 

References 

Banten, Jakarta,West 
Java, Indonesia 

9 river outlets to Jakarta 
Bay 

6.09–124.75 9.02 ± 4.68 226–2917 Trawling (mini 
manta trawl net) 

15 This study 

Banten, Indonesia Dadap River 6.56 7.16 ± 1.76 297–2001 Trawling (mini 
manta trawl net) 

15 This study 

Jakarta, Indonesia Angke River 91.25 5.94 ± 0.69 288–1298 Trawling (mini 
manta trawl net) 

15 This study 

Jakarta, Indonesia Pluit River 19.6 6.18 ± 1.98 275–2401 Trawling (mini 
manta trawl net) 

15 This study 

Jakarta, Indonesia Ciliwung Ancol River 124.75 6.05 ± 0.85 236–2917 Trawling (mini 
manta trawl net) 

15 This study 

Jakarta, Indonesia Kali Item River 5.97 6.51 ± 2.11 232–2468 Trawling (mini 
manta trawl net) 

15 This study 

Jakarta, Indonesia Koja River 55.58 7.04 ± 1.51 226–1789 Trawling (mini 
manta trawl net) 

15 This study 

Jakarta, Indonesia Cilincing River 44.97 10.88 ± 2.79 296–1096 Trawling (manta 
trawl net) 

15 This study 

Jakarta, Indonesia Marunda River 23.5 15.49 ± 4.28 287–2784 Trawling (manta 
trawl net) 

15 This study 

West Java, Indonesia Bekasi River 6.09 15.97 ± 6.05 296–1640 Trawling (manta 
trawl net) 

15 This study 

Banten, Indonesia Cisadane River 138 61.33 ± 18.50 146–2680 Filtering 50 (Sulistyowati 
et al., 2022) 

Bambe to Jagir, East 
Java, Indonesia 

Surabaya River 43.2 4.47–21.16 300–5000 Trawling (manta 
trawl net) 

16 (Lestari et al., 
2020) 

Citarum downstream 
area, West Java, 
Indonesia 

Citarum River 270 3.35 ± 0.54 201–4983 Trawling (manta 
trawl net) 

15 (Cordova et al., 
2022) 

Citarum downstream 
area, West Java, 
Indonesia 

Citarum River 270 0.057 ± 0.025 50–2000 Trawling (manta 
trawl net) 

45 (Sembiring et al., 
2020) 

Ciliwung downstream 
area, Jakarta, 
Indonesia 

Ciliwung River 119 9.37 ± 1.37 300–5000 Trawling (manta 
trawl net) 

15 (Cordova et al., 
2020) 

Lower reaches section of 
Yangtze River, China 

Yangtze River 6300 983.3 ± 234.7 500–5000 Trawling (manta 
trawl net) and 
filtering 

Not available 
(surface) 

(He et al., 2021) 

Yangtze River estuary, 
China 

Yangtze River 6300 1838.9 ± 1041.9 500–5000 Trawling (manta 
trawl net) and 
filtering 

Not available 
(surface) 

(He et al., 2021) 

Hangzhou, China Qiantang river 494 1183 ± 269 45–5000 Filtering 50 (Zhao et al., 
2020) 

Fujian, China Zhangjiang River 258 50–725 300–5000 Filtering using 
manta net 

Not available 
(surface) 

(Pan et al., 2020) 

Ho Chi Minh City, 
Vietnam [fiber shape] 

Saigon River 225 172,000–519,000 50–4850 Trawling (plankton 
net) 

70 (Lahens et al., 
2018) 

Ho Chi Minh City, 
Vietnam [fragment 
shape] 

Saigon River 225 10–223 50–4850 Trawling (plankton 
net) 

70 (Lahens et al., 
2018) 

Greater Melbourne Area, 
Australia 

Watersheds of Port 
Phillip and Western Port 
Bays 

n.a. 30–1700 1.26 ± 0.93 Filtering 0–5 (Su et al., 2020) 

Arkhangelsk Region, 
Russia 

Northern Dvina River 744 0.003–0.010 333–5000 Trawling (neuston 
net) 

15 (Zhdanov et al., 
2022)  
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microplastic sources activity. 

5. Conclusion 

Microplastic particles were found in all nine river outlets studied in 
our study. The presence of microplastic particles in all tests indicates 
that Jakarta Bay is contaminated with microplastics. Based on our 
findings and field observations, we believe that the origin of micro-
plastic particles in all river outlets is very likely due to the breakdown of 
macroplastic within the aquatic ecosystem and the combination of land- 
based sources. Through the seasonal analysis from March to December 
2020, this study established a strong correlation between rainfall and 
microplastic abundance in the surface water of nine river outlets to 
Jakarta Bay. Our analysis discovered that an increase in polypropylene 
fiber-shaped microplastics could result from COVID-19 PPE waste, 
notably face masks. As a result, proper waste management is crucial for 
minimizing microplastics emissions into the environment. It should be 
emphasized that extensive studies into microplastic pollution in Indo-
nesia’s freshwater and marine ecosystems are necessary. 
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