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A B S T R A C T   

Microplastics are a relevant environmental concern in marine ecosystems due to their ubiquity. However, 
knowledge on their dispersion patterns within the ocean basin and the interaction with biota are scarce and 
mostly limited to surface waters. This study investigated microplastic contamination in two species of deep-sea 
cephalopods from the southwestern Atlantic with different ecological behaviour: the vampire squid (Vampyr
oteuthis infernalis) and the midwater squid (Abralia veranyi). Microplastic contaminated most of the evaluated 
specimens. V. infernalis showed higher levels of contamination (9.58 ± 8.25 particles individual− 1; p < 0.05) 
than A. veranyi (2.37 ± 2.13 part. ind.− 1), likely due to the feeding strategy of V. infernalis as a faecal pellets 
feeder. The size of extracted microplastics was inversely proportional to the depth of foraging. The microplastics 
were highly heterogeneous in composition (shape, colour and polymer type). Our results provide information 
regarding microplastic interaction with deep-sea organisms and evidence of the biological influence in the 
microplastic sinking mechanism.   

Plastics have a crucial role in the global economy as raw materials, 
positively influencing the market dynamics due to the low production 
costs, high durability, and versatility (Andrady and Neal, 2009; Derraik, 
2002). However, during the last decades, the great demand and further 
production of plastics have rapidly increased (Geyer et al., 2017), arising 
major concerns regarding their final fate and hazardous potential. 
Microplastics (<5 mm; MPs) (Arthur et al., 2009) have gained attention 
due to their toxicity and the widespread occurrence as a contaminant in 
the aquatic environment (Bhagat et al., 2020; Eriksen et al., 2014). 

Inshore economic activities yield the major waste production. Con
tinental areas are the main plastic reservoir in the biosphere (GESAMP, 
2016; Van Sebille et al., 2015), where a considerable portion of these 
products are mismanaged along the production chain or disposed into 
landfills, then later flushed by rainfall into waterways (Jensen et al., 

2019). Improper sewage disposal, inefficient wastewater treatment 
plants, and atmospheric transport are additional sources of MPs to the 
aquatic ecosystems (Allen et al., 2019; De Falco et al., 2019). Once in the 
drainage basin, advection flow will transport MPs downstream to the 
estuary (Lima et al., 2014). Estuaries can supply many MPs to the 
adjacent coastal waters and are acknowledged as the main source to the 
ocean (Lebreton et al., 2017), mostly during increased river flow periods 
(Cheung et al., 2016). 

Microplastics are ubiquitous at the ocean surface (Hardesty et al., 
2017), drifting according to the wind, geostrophic currents, stokes drift, 
and surface currents that will lead to convergence areas (Jiang et al., 
2020; Mountford and Morales Maqueda, 2019; Van Sebille et al., 2015). 
The so-called hot spots of MP pollution tend to be correlated with ocean 
gyres and polar zones (Jiang et al., 2020; Lima et al., 2021). Peaks in the 
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density (particles/m3) of this contaminant are also associated with the 
proximity of the main sources, mostly enclosed seas surrounded by 
densely inhabited areas (Van Sebille et al., 2015). However, several 
aspects related to the occurrence, density and dispersion of MPs into 
deeper ocean layers are still poorly understood. 

The density of MPs in the deep sea relies on thermohaline currents 
(Kane et al., 2020) and a complex sinking pattern, which encompasses 
oceanographic parameters, specific features of particles (e.g., the density 
of polymers, surface area, and fragmentation rates), and incorporation 
by marine snow and faecal pellets (Onink et al., 2019; Kvale et al., 
2020). Microplastics comprise a heterogeneous assemblage of particles 
that vary in shape, colour, size and chemical composition, including 
several polymer derivatives of the petrochemical industry (Barnes et al., 
2009). Most polymers have a molecular density higher than seawater 
and are thus negatively buoyant (Mountford and Morales Maqueda, 
2019). Advection flow might play a crucial role in their sinking rates 
(Kvale et al., 2020). However, some polymers (e.g., polyethylene, 
polystyrene, and polypropylene) (Geyer et al., 2017) are positively 
buoyant and likely require additional mechanisms and/or greater resi
dence time to finally sink through the water column (Koelmans et al., 
2017; Long et al., 2015). 

Due to their prevalence, persistence, diminutive size, and colonisa
tion by microorganisms, MPs are highly susceptible to be ingested 
throughout the food web (Everaert et al., 2018; Ferreira et al., 2019b; 
Roch et al., 2020). Moreover, marine organisms play an important role 
in vertical MP transportation (Kvale et al., 2020). Zooplankton modifies 
sinking rates of egested MPs through their incorporation within faecal 
pellets (Cole et al., 2016). Vertical migratory species from the mesope
lagic realm induce important vertical biomass fluxes (Davison et al., 
2013; Eduardo et al., 2020). Thereby, the diel migration pattern of 
preying upon contaminated resources (contaminated habitat and food) 
in the uppermost ocean layers and returning to the deep layers suggests 
that vertical migration contributes to MP transportation. 

Despite providing key ecological links between different depth strata 
(Robinson et al., 2010), cephalopods are among the least studied groups 
regarding MP contamination (Alejo-Plata et al., 2019; Oliveira et al., 
2020). Yet, surveys have pointed to microplastic contamination among 

the most common preys (copepods, euphausiids, crabs, tunicates, and 
fishes) and predators (cetaceans) of deep-sea cephalopods (Choy et al., 
2019; Davison and Asch, 2011; Desforges et al., 2015; Lusher et al., 
2015; Wieczorek et al., 2018). Cephalopods are exposed to at least two 
main contamination pathways; the contaminants present in the water 
column and those in the prey’s digestive tract. Vampyroteuthis infernalis 
(Chun, 1903) is the only living species from the Vampyroteuthidae 
family. It usually inhabits meso- and bathypelagic zones throughout the 
oceans (Hoving and Robison, 2012) with a slow-swimming and oppor
tunistic behaviour foraging on copepods, but mostly on marine snow 
(Golikov et al., 2019). The Enoploteuthidae Abralia veranyi (Rüppell, 
1844) inhabits the upper layers of the mesopelagic zone in the Atlantic 
Ocean, migrating towards the epipelagic zone to prey on copepods, 
decapods, and fish (Guerra-Marrero et al., 2020). 

The objectives of this study were to (i) evaluate if cephalopods from 
the southwestern tropical Atlantic (V. infernalis and A. veranyi) are 
contaminated by microplastic particles and (ii) investigate whether 
cephalopods with different ecological behaviour exhibit different pat
terns of contamination. To our knowledge, this is one of the first studies 
to evaluate microplastic contamination in deep-sea cephalopods from 
the South Atlantic and the first to evaluate contamination in V. infernalis 
and A. veranyi. 

Mesopelagic cephalopods were collected in the southwestern trop
ical Atlantic during the multidisciplinary research cruise ABRACOS2 
(Acoustics along the BRAzilian COaSt 2), onboard the French R/V Antea 
from 9th April to 6th May 2017 (Bertrand, 2017) (Fig. 1). Samplings 
were carried out off northeastern Brazil using a micronekton trawl net 
with different mesh sizes (body mesh: 40 mm, cod-end mesh: 10 mm, 
estimated opening area: 120 m2). Individuals were selected from 5 
sampling stations, and vertical trawls were conducted both day and 
night, between 25 and 1113 m depth at 2–3 kt (Eduardo et al., 2020). 

The study area encompasses the Fernando de Noronha Archipelago, 
Rocas Atoll, and adjacent seamounts (Fig. 1), which together are 
considered an Ecologically and Biologically Significant Marine Area and 
include Marine Protected Areas (CBD, 2014). Additionally, Fernando de 
Noronha Archipelago is classified as an UNESCO Natural Heritage of 
Humanity, and the number of tourists reaches >50,000 in the peak 

Fig. 1. Study area in the southwestern tropical Atlantic, sampling stations where Vampyroteuthis infernalis and Abralia veranyi were captured (5 stations).  
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season (austral summer season) (IBGE, 2010). The surface waters of the 
study area are not estimated to be an accumulation zone for MPs (Jiang 
et al., 2020; Lima et al., 2021); the area is dominated by the South 
Equatorial Current (SEC) and South Equatorial Undercurrent (SEUC) 
and is characterised by a thin thermocline and high stratification 
(Assunção et al., 2020). 

Promptly upon collection at each sampling station, specimens (V. 
infernalis n = 19 and A. veranyi n = 8) were fixed in a 4% formalin so
lution and then preserved in a 70% ethanol solution in the laboratory. 
Organisms were identified (Nesis, 1982; Roper et al., 1984), measured 
(nearest 0.001 cm of total length and dorsal mantle length) and weighed 
(nearest 0.0001 g of total weight). Since precautionary measures to 
avoid contamination were not implemented during sampling and stor
age, individuals were thoroughly washed before analysis with filtered 
(glass fibre filter) distilled water to remove any particles attached to the 
outermost tissue. Then, beaks were removed, and the entire animal was 
submitted to chemical digestion through sodium hydroxide (NaOH 1 
mol/L; PA 97%). 

We implemented chemical digestion through base reaction (NaOH), 
due to greater logistical performance (short incubation period and cost- 
effective method) and for preserving the integrity of polymers after 
chemical digestion (Budimir et al., 2018). Specimens were individually 
stored in beakers covered by glass lids. Each beaker was filled with 
NaOH solution (100 mL of solution per gram of organic sample) and 
oven-dried at 60 ◦C for 24 h (Lusher et al., 2017; Wieczorek et al., 2018). 
Samples were mixed with a glass stick two times during the incubation 
period to homogenise the solution. 

Samples (output of digestion process) were filtered through a glass 
fibre filter (GF/F 0.7 μm pore size Whatman) using a membrane filtra
tion system with a vacuum set up (equipped with laboratory glassware). 
The glass fibre filters with the digestion residues were then placed in 
covered Petri dishes and oven-dried at 60 ◦C for 24 h (for the complete 
protocol, see Justino et al., 2021). Two observers visually examined 
samples to reduce identification bias (overestimation and/or underes
timation of contaminants) on a stereomicroscope (Zeiss Stemi 508, using 
40-50× magnification with a detection limit of 20 μm) coupled with a 
device camera (Axiocam 105 Colour). Items suspected to be micro
plastics were photographed, counted, measured (Zeiss Zen 3.2), and 
categorised according to morphological and optical characteristics into 
(i) fibres (filamentous shape), fragments (thick with an irregular shape), 
film (flat with an irregular shape), foam (soft with an irregular shape) 
and beads (spherical shape), and (ii) black, blue, green, red and white 
(Lusher et al., 2017). Petri dishes were kept closed during the entire 
identification process to avoid airborne contamination of samples. 

As chemical digestion is not an efficient process to distinguish be
tween plastic fibres and cellulose fibres, a sub-sample of particles 
extracted from the specimens were identified through Laser Directed 
Infra-Red analysis (LDIR). The selection of particles composing the sub- 
sample followed their shape as criteria rather than differences between 
the species. The absorbance of polymers was obtained using the Agilent 
8700 LDIR Chemical Imaging System with the Microplastics Starter 1.0 
library. Each spectral curve resulted from scans performed in the 
wavelength ranging from 1800 to 975 cm− 1 (Ourgaud et al., In prep). 
The specific polymer was asserted when a given particle registered 
above 70% of similarity with the reference spectrum. 

Several procedures were taken to avoid airborne contamination of 
samples. All analyses were conducted under a laminar flow cabinet in a 
subsection of the laboratory designed to limit the flow of people 
(Wieczorek et al., 2018). As clothing made from synthetic fibres repre
sents a potential source of contamination (Su et al., 2019), latex gloves, 
100% cotton lab coats, and facemasks were worn during laboratory 
analysis. 

All solutions used during the MP extraction were made using distilled 
water and filtered over a 47 mm GF/F filter (0.7 μm pore size). Before 
the analysis, work surfaces, equipment, and manipulation instruments 
were thoroughly cleaned with 70% alcohol. All manipulation 

instruments were rinsed with filtered distilled water and double- 
checked under a stereomicroscope for contamination before use. 

A procedural blank was run in conjunction with each sample batch 
(~5 samples) to determine airborne contamination during the analysis. 
For blanks, a beaker was filled with 300 mL of NaOH solution and 
submitted to the same procedures applied to the samples (Justino et al., 
2021). Out of the five procedural blanks implemented during the anal
ysis, two registered contamination, a single blue fibre. Any contamina
tion evinced from the procedural blanks was subtracted from the 
corresponding sample batch (1 blank for each ~5 samples). Thereby, 
particles matching these characteristics (shape and colour) were omitted 
from the dataset and analysis. 

The Percentage of the Frequency of Occurrence (FO%) was calcu
lated to assess the overall contamination status of the species. The FO% 
was calculated as the percentage of individuals in a given species in 
which MP particles were recorded. As the data on MPs extracted did not 
meet parametric assumptions, Mann-Whitney tests were applied to 
determine whether there were any differences in the number and size 
(shape, colour and the overall particles, regardless of shape and colour) 
of MPs between the species. The number of extracted MPs was expressed 
as abundance (particles individual− 1), containing all analysed in
dividuals, including those that did not ingest MPs (Provencher et al., 
2017). All analyses were carried out using R 3.6 (R Core Team, 2020) 
with a 5% significance level. 

In this study, two species of deep-sea cephalopods were analysed. 
Both species registered a high prevalence (FO%) of MPs (V. infernalis 
100% and A. veranyi 87.5%) (Table 1). Contamination levels (number of 
particles) varied between the species, ranging from 1 to 33 particles for 
V. infernalis (a total of 182 particles) and from 0 to 7 particles for A. 
veranyi (a total of 19 particles). Vampyroteuthis infernalis (9.58 ± 8.25 
part. ind.− 1; mean ± standard deviation) (W = 134.5, p ≤ 0.05) was the 
more contaminated species (A. veranyi 2.37 ± 2.13 part. ind.− 1) (Fig. 2 
and Supplementary material). 

Plastic particles extracted from cephalopods ranged from 0.06 to 
3.91 mm in size. Most particles were categorised within the MP size 
range (99% of particles <5 mm). Independent of shape and colour, the 
average length of particles extracted from A. veranyi (0.63 ± 1.19 mm) 
(W = 116, p ≤ 0.05) was longer than that of V. infernalis (0.61 ± 0.34 
mm) (Fig. 2 and Supplementary material). 

In total, 201 MP particles corresponding to five main groups were 
recorded (Fig. 3). Fragments were the most common shape of MP 
extracted for both species (V. infernalis 3.36 ± 3.67 part. ind.− 1 and A. 
veranyi 1.5 ± 1.69 part. ind.− 1), followed by fibres [3.05 ± 2.34 part. 
ind.− 1 (W = 120.5, p ≤ 0.05) and 0.5 ± 0.75 part. ind.− 1, respectively] 
and beads (1.84 ± 6.6 part. ind.− 1 and 0.37 ± 0.52 part. ind.− 1, 
respectively) (Table 1). Microplastics categorised as foam (1.21 ± 2.01 

Table 1 
Summary of results regarding the mean (±standard deviation) number (particles 
individuals− 1) and FO% (frequency of occurrence) of microplastics extracted 
from Vampyroteuthis infernalis and Abralia veranyi, according to shape and 
colours.   

V. infernalis A. veranyi 

Mantle length 30.3 ± 8.7 mm 26.8 ± 6.3 mm 
Sample size 19 8 
Capture depth 800–1000 m 25 m 
Microplastics FO% 100% 87.5% 
Shape of particles Fibre 3.05 ± 2.34 (73.7%) 0.5 ± 0.75 (37.5%) 

Fragment 3.36 ± 3.67 (89.5%) 1.5 ± 1.69(62.5%) 
Film 0.1 ± 0.31 (10%) 0% 
Foam 1.21 ± 2.01 (42%) 0% 
Beads 1.84 ± 6.6 (31.6%) 0.37 ± 0.52 (37.5%) 

Colour of particles Black 0.89 ± 1.28 (42.1%) 0.25 ± 0.70 (12.5%) 
Blue 1.26 ± 2.15 (52.6%) 1.12 ± 1.35 (62.5%) 
Green 0.26 ± 0.56 (21.1%) 0% 
Red 1.15 ± 1.64 (52.6%) 0.12 ± 0.35 (12.5%) 
White 6 ± 7.17 (89.5%) 0.87 ± 0.64 (75%)  
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part. ind.− 1) and films (0.1 ± 0.31 part. ind.− 1) were only recorded in V. 
infernalis (Table 1 and Supplementary material). 

The MP shapes did not significantly differ in size according to spe
cies. Among the different shapes, fibres showed the broadest size range 
for both species (V. infernalis 0.91 ± 0.92 mm and A. veranyi 0.64 ± 1.23 
mm) (Fig. 2). Fragments (V. infernalis 0.33 ± 0.37 mm and A. veranyi 
0.13 ± 0.14 mm) and foam (V. infernalis 0.16 ± 0.22 mm) were mostly 
ingested as small particles, whereas film (V. infernalis 0.01 ± 0.04 mm) 
and beads (V. infernalis 0.04 ± 0.06 mm and A. veranyi 0.03 ± 0.04 mm) 
were the smallest fractions of ingested MPs (Fig. 2 and Supplementary 
material). 

Concerning the colour of extracted MPs, white particles (6 ± 7.17 
part. ind.− 1) prevailed in V. infernalis (W = 84.5, p ≤ 0.05), followed by 

blue (1.26 ± 2.15 part. ind.− 1) and red (1.15 ± 1.64 part. ind.− 1), 
whereas A. veranyi was most contaminated by blue (1.12 ± 1.35 part. 
ind.− 1), white (0.87 ± 0.64 part. ind.− 1) and black particles (0.25 ± 0.7 
part. ind.− 1) (Table 1 and Supplementary material). 

The subsample of particles analysed by LDIR comprehended 5.5% of 
the total particles extracted from the cephalopods. LDIR analysis suc
cessfully identified 78% of the subset as plastic polymers, including 
seven different polymers (polyethylene, polyethylene terephthalate, 
polyvinyl chloride, polyamide, styrene-butadiene rubber, chlorinated 
polyisoprene and polyurethane) (Fig. 4). Cellulose and wool particles 
were not registered in the subsample tested, but 22% of particles could 
not be identified through the assessed library. Thereby, those particles 
can be marine debris of natural origin or highly weathered plastic 

Fig. 2. Mean (±standard error) (a) number, (b) length, and (c) (%) shape according to the size of ingested microplastics by Vampyroteuthis infernalis and Abralia 
veranyi from the southwestern tropical Atlantic. 

Fig. 3. Microplastic particles extracted from deep-sea cephalopods (Vampyroteuthis infernalis and Abralia veranyi): (a) fibre, (b) tangled fibres, (c) fragment, (d) foam, 
(e) film and (f - g) beads. 
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polymers. 
Plastic pollution has become a major environmental issue (Eriksen 

et al., 2014; Raubenheimer and McIlgorm, 2018). Microplastics are 
asserted to contaminate the soil, air, and water bodies, which are the 
main pathway for their dispersion and accumulation (Allen et al., 2019; 
Corradini et al., 2019; Lebreton et al., 2017). Despite the recent 
awareness of the ubiquity of MPs, little is known regarding the general 
patterns of dispersion, fragmentation, and interaction with marine biota 
in the deepest ocean layers (Kane et al., 2020; Liu et al., 2020; Porter 
et al., 2018). Indeed, plastics (>330 μm) contaminating the upper ocean 
layers represent less than 1% of the estimated global annual plastic in
puts to the ocean (Jambeck et al., 2015; Van Sebille et al., 2015). The 
remaining missing plastics are likely fragmenting into smaller pieces, 
diffusing into deeper layers, sediments (Dai et al., 2018; Courtene-Jones 
et al., 2017; Gerigny et al., 2019; Kane et al., 2020; Kanhai et al., 2018) 
and being assimilated by deep-sea biota (Choy et al., 2019; Sathish et al., 
2020). 

Cephalopods inhabiting coastal areas have been asserted to ingest 

MPs (Daniel et al., 2021; Oliveira et al., 2020). Oliveira et al. (2020) 
identified higher contamination levels (number of particles) in wild 
cuttlefish (Sepia officinalis) than in those from a cultured marine station 
on the coast of the Iberian Peninsula, likely due to the retention of 
particles in the filtration system of culture tanks. Daniel et al. (2021) 
investigated MPs in the edible tissues of four shellfish species on the 
Arabian Sea coast and detected the highest levels of contamination in 
the squids (Uroteuthis duvaucelii). This is the first study to investigate 
MPs in deep-sea cephalopods from the southwestern Atlantic and to 
provide information on V. infernalis and A. veranyi. Surveys on the deep 
sea are logistically challenging, and literature in this field is scarce. To 
our knowledge, only two studies, both regarding macroplastics (>5 
mm), have been published on deep-sea representants of this group 
(Braid et al., 2012; Rosas-Luis, 2016). Both studies focused on the jumbo 
squid Dosidicus gigas, describing ingestion of large particles, mainly 
fishing lines. Braid et al. (2012) also observed the ingestion of plastic 
beads, but the dimension of particles was not assessed. Thereby, com
parisons between our findings and other studies on deep-sea 

Fig. 4. Microplastic polymers identified by the LDIR analysis: (a) particle composition, (b) plastic polymers composition, (c) PVC (polyvinyl chloride) MP fragment 
(solid line: particle spectrum; dotted line: reference spectrum), (d) PET (polyethylene terephthalate) MP fibre (solid line: particle spectrum; dotted line: reference 
spectrum), (e) PE (polyethylene) MP foam and (f) PU (polyurethane) MP fragment. 
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cephalopods are limited. 
Microplastic ingestion is correlated with the density (particles m− 3) 

of contaminants in the environment (Güven et al., 2017), which can 
significantly differ according to depth, turbulence, and specific areas 
within the ocean basin (Kooi et al., 2017; Lima et al., 2021; Reisser et al., 
2015). The feeding strategy of species also influences the levels of 
contamination (Ferreira et al., 2019a; McNeish et al., 2018; Messinetti 
et al., 2018; Miller et al., 2020; Mizraji et al., 2017; Setälä et al., 2014). 
Marine biota can ingest MPs through three main pathways (Moore, 
2008): (i) actively when they are mistaken for actual prey (Moore, 
2008), which in this case are very similar in size (copepods, mysids, and 
early-stage decapods) (Figueiredo et al., 2020) or (ii) passively, trough 
particles adhered and in the surroundings of prey during the feeding 
process, such as suggested for cephalopods in field studies (Alejo-Plata 
et al., 2019; Rosas-Luis, 2016). Additionally, MPs can also be (iii) 
transferred within the trophic web by ingesting contaminated prey 
(Ferreira et al., 2019b; Nelms et al., 2018; Setälä et al., 2014). Indeed, 
the trophic transfer has been acknowledged as the core pathway for MP 
ingestion in cephalopods (Daniel et al., 2021; Braid et al., 2012); this 
group, in turn, may also act as vectors transferring MPs to higher trophic 
levels (Alejo-Plata et al., 2019) and potentially to humans as seafood 
(Daniel et al., 2021). 

Both species analysed here (A. veranyi and V. infernalis) exhibited a 
high prevalence of MPs (FO% and part. Ind− 1) when compared to other 
deep-sea biota (Braid et al., 2012; Daniel et al., 2021; Davison and Asch, 
2011; Rosas-Luis, 2016; Wieczorek et al., 2018). MP ingestion was 
observed among marine copepods, euphausiids, crabs, tunicates, and 
mesopelagic fishes that are common prey for the species analysed in this 
study (Bernal et al., 2020; Choy et al., 2019; Desforges et al., 2015; 
Lusher et al., 2016; Sathish et al., 2020; Wieczorek et al., 2018), which 
indicates the possibility of this contamination pathway. 

The species analysed in this study have different ecological behav
iour. A. veranyi inhabits the upper mesopelagic zone (200–500 m depth) 
during daytime and migrates towards the epipelagic zone to forage 
during the night-time (Roper et al., 1984) as part of the DSL (Deep 
Scattering Layer) migrants. According to the size range of captured A. 
veranyi, most of the individuals were under ontogenetic shift, reaching 
the adult phase (dorsal length > 30.9 mm), when they prey mostly on 
zooplankton and fish (Guerra-Marrero et al., 2020). In general, MP 
occurrence is greater in surface and sub-surface waters than in inter
mediate layers (Bagaev et al., 2018; Kvale et al., 2020; Zobkov et al., 
2019). A. veranyi forage on the ocean layer with the higher density of 
MPs and feeds on copepods and fishes, both frequently reported to ingest 
MPs (Bernal et al., 2020; Botterell et al., 2019; Wieczorek et al., 2018); 
hence the recurrent and relatively high contamination levels observed 
are not surprising. Contamination levels were higher than those 
observed for the large predatory squid D. gigas (Braid et al., 2012; Rosas- 
Luis, 2016), which forages in deeper layers, but lower than those for S. 
officinalis that feeds in shallower coastal waters (Oliveira et al., 2020). 
The feeding habitat (epipelagic zone) might also have influenced the 
size of MPs ingested by A. veranyi. This species showed the longest MPs, 
and the size of these particles in the water column is negatively corre
lated with depth (Dai et al., 2018; Zobkov et al., 2019). 

Vampyroteuthis infernalis inhabits deeper layers from the lower 
mesopelagic zone (500–1000 m depth) (Hoving and Robison, 2012). 
Individuals analysed in this study corresponded to the juvenile phase 
(dorsal length < 66 mm) (Hoving et al., 2015; Schwarz et al., 2020), 
when they display a transition in the locomotion pattern towards a more 
passive predatory behaviour, feeding on aggregated marine snow and 
POM (Particulate Organic Matter) associated feeder invertebrates 
(Golikov et al., 2019; Hoving and Robison, 2012). To a smaller degree, 
V. infernalis juveniles also actively prey upon zooplankton (Seibel et al., 
1998). 

Despite MPs being less available in the foraging habitat of V. infer
nalis, this species registered higher contamination levels than A. veranyi, 
other cephalopod species (Braid et al., 2012; Daniel et al., 2021; Rosas- 

Luis, 2016) and fishes (Boerger et al., 2010; Lusher et al., 2016; Wiec
zorek et al., 2018), which specific ecological traits might explain. Ma
rine aggregates (e.g., marine snow and faecal pellets) play an essential 
role in transporting MPs from the surface to the deep ocean (Cole et al., 
2016; Kvale et al., 2020; Möhlenkamp et al., 2018). Thereby, V. infer
nalis, feeding on faecal pellets and marine snow (Golikov et al., 2019; 
Hoving and Robison, 2012), is likely more vulnerable to contamination. 
Additionally, V. infernalis is asserted to have the lowest metabolic rates 
among all cephalopods, as an adaptative trait to live within the oxygen 
minimum zones (OMZs) (Seibel et al., 1997), contributing to low eges
tion rates, which may result in a momentary build-up of MP particles in 
the body. 

The MPs extracted from A. veranyi and V. infernalis were heteroge
neous, varying in shape and colour. However, no differences were 
observed between species, suggesting the absence of active ingestion of 
particles or, at least, a similar “preference” for the same colours and 
shapes. Nevertheless, according to the size of the specimens and the tiny 
dimensions of the particles, active predation (confusion with actual 
prey) is unlikely to occur. The colour composition of MPs extracted from 
cephalopods resembled those observed in epipelagic and deep-sea water 
samples elsewhere (Artic and Atlantic Ocean) (Campos da Rocha et al., 
2021; Courtene-Jones et al., 2017; Kanhai et al., 2018). 

Fragments were the most common shape of MP ingested for both 
species, as observed for U. duvaucelii and deep-sea fishes from the North 
Pacific Central Gyre, Northeast Atlantic and Eastern Mediterranean 
(Anastasopoulou et al., 2013; Boerger et al., 2010; Daniel et al., 2021; 
Pereira et al., 2020). The contamination by fibres was very relevant, 
being the second most common shape extracted and prevailing among 
the larger particles (>1 mm), likely due to their high density in the 
environment. Fibres comprehend more than 90% of MPs in the water 
column (Kanhai et al., 2018; Lima et al., 2021) and generally is the most 
common shape ingested by deep-sea organisms (Gago et al., 2020; Oli
veira et al., 2020; Sathish et al., 2020; Wieczorek et al., 2018). Despite 
beads being seemingly less common in water samples (Barrows et al., 
2018), the spherical MPs were also observed in D. gigas (Braid et al., 
2012). Beads have the highest sinking rate among the different MP 
shapes (Khatmullina and Isachenko, 2017), positively influencing their 
density (particles m− 3) in the deep sea. 

Given the size range of extracted MPs, they are likely not bio
accumulated, since only the smaller fraction of microplastics (<5 μm) 
and nanoplastics (<1 μm) are prone to be assimilated into tissues and 
organs (Lee et al., 2019; Lu et al., 2016; Sökmen et al., 2020). However, 
particles within this size fraction could not be assessed using the 
methodology implemented herein. 

The assimilation of plastics is associated with the uptake of several 
chemical additives (e.g., plasticisers, pigments, flame retardants, and UV 
stabilisers) introduced during the manufacturing and pollutants adsor
bed from the environment (Batel et al., 2016; Galloway et al., 2017). The 
large surface area and the hydrophobic nature of MPs increase the 
sorption capability of several organic pollutants (e.g., DDT, PCBs and 
PAHs) (Bakir et al., 2012; Rios et al., 2007; Rochman et al., 2013), 
whereas the biofouling of MPs enhances the sorption of heavy metals 
and antibiotics (Richard et al., 2019; Wang et al., 2020). The sorption of 
pollutants is influenced by environmental conditions, polymer compo
sition, and residence time; plastics with longer stays in the ocean 
accumulate higher concentrations of pollutants (Rochman et al., 2014). 
Polyethylene, for instance, the most common polymer extracted from 
the cephalopods in this study, is asserted to have a greater sorption 
capability than other polymers (Alimi et al., 2018). 

The role of MPs as vectors for pollutants and their adverse effects on 
cephalopods has not been evaluated to date. However, experimental 
research on MP ingestion by fish indicates several adverse effects (e.g., 
intestinal damage, oxidative stress, immunotoxicity, genotoxicity, 
developmental, reproductive and locomotor toxicity) (Bhagat et al., 
2020). Further research is necessary to investigate if MP contamination 
can reduce the swimming and feeding activity of cephalopods, as was 
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observed for fish (de Sá et al., 2015; Qiang and Cheng, 2019). If so, deep- 
sea cephalopods could be more vulnerable to the adverse effects given 
the extended diel vertical migration to forage. 

Understanding general MP dispersion into the deep ocean and their 
final fate is one of the most relevant open questions in the field. The 
broad range of shapes and identified polymers indicate multiple sources 
of contamination. The biological activity influences the MP sinking rates 
through biofouling, aggregation in marine snow and faecal pellets. 
Additionally, vertical migratory species may play a significant role. 
Cephalopods and other vertical migrants ingest MPs in shallower waters 
with high MP density and likely egest those contaminants into deeper 
layers during resting periods. 

Cephalopods are widely recognised as playing a crucial role in many 
marine ecosystems, both as predators and prey. The vampire and mid
water squids are important prey for harvestable fish stocks and highly 
threatened species of the southwestern Atlantic (Vaske Júnior et al., 
2009; Vaske Júnior et al., 2012). Yet, they remain poorly known 
worldwide while increasingly at risk in several ways, such as climatic 
change (Levin et al., 2018) and deep-sea exploitation (Drazen et al., 
2020). Additionally, we show that both A. veranyi and V. infernalis are 
highly contaminated by MPs, which threatens their survival and may 
enhance the plastic transportation between oceanic layers. 

With the observed pervasion of plastic into the ocean, we reaffirm 
that the structure and function of deep-sea ecosystems could undergo 
changes that, given the current state of knowledge, may go mostly un
noticed by scientists and marine resource managers. More studies 
encompassing a greater sample size, various sampling depths, oceano
graphic parameters, and different taxonomic and ecological groups are 
required to understand the interaction with MPs in these habitats and 
investigate if the driving force responsible for the biological pump could 
also “sequestrate” microplastics into deeper ocean layers, as a plastic 
pump. 
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