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Abstract

Determining microplastics in environmental samples quickly and reliably is a challenging task. With a largely automated

combination of optical particle analysis, Fourier transform infrared (FT-IR), and Raman microscopy along with spectral

database search, particle sizes, particle size distributions, and the type of polymer including particle color can be deter-

mined. We present a self-developed, open-source software package for realizing a particle analysis approach with both

Raman and FT-IR microspectroscopy. Our software GEPARD (Gepard Enabled PARticle Detection) allows for acquiring an

optical image, then detects particles and uses this information to steer the spectroscopic measurement. This ultimately

results in a multitude of possibilities for efficiently reviewing, correcting, and reporting all obtained results.

Keywords

Microplastics, Raman, Fourier transform infrared, FT-IR, microspectroscopy, Open Source

Date received: 8 November 2019; accepted: 29 April 2020

Introduction

Microplastic particles (MP) have become a very intensively

discussed and highly visible topic in both scientific and main-

stream media.1,2,3–10,11 Of the 8.3 billion tons of plastic

produced worldwide by 2015, 6.3 billion tons of plastic

waste produced are offset in the same period.12 Plastics

are estimated to remain in the environment for 100–500

years, depending on the type of plastic.13 By 2015, only 9%

of the plastic waste produced worldwide was recycled, just

12% of the plastic waste was incinerated and recycled for

energy with 79% of the plastic waste was landfilled or

emitted into the environment, mostly in the sea and

seabed. According to estimates, approximately eight million

tons of plastic waste find their way into the sea every year

via rivers, wind, wastewater, etc. This waste accumulates in

the environment, mostly in the sea and in the seabed.13

These plastics can then fragment into MP by wind, waves,

and solar radiation. Microplastics are solid and insoluble

plastic particles smaller than 5 mm and larger than

1 mm.14 To reduce the load of MP in the environment,

there is a considerable need for research into the main

sources, transport routes, and whereabouts, as well as

their distribution in the environment. Decisive for future

evaluation is the knowledge of how much MP, which MP

types, and which sizes are present in different environmen-

tal compartments (e.g., oceans, sediments, rivers, soils,

atmosphere).

A key issue of current MP studies is to gather greater

and more comprehensive knowledge of MP occurrence in

the environment and use this to reliably ascertain sources

and sinks of MP, as well as to evaluate potential environ-

mental impacts (i.e., effect on biota and humans).15,16 The
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currently employed methods for MP determination in envir-

onmental samples are still too time-consuming to be used

as monitoring techniques. Hence, significant efforts have

been made by numerous research groups to facilitate and

harmonize MP analysis procedures.5–7,17–19

Determining the MP content of any environmental

sample requires three steps: (i) a suitable procedure for

actually obtaining the sample has to be found, depending

whether a sample is to be taken from, e.g., air, water,

biota, or soil.1,4,20–22 (ii) An adequate protocol for sample

processing has to be applied. Depending on the type of ana-

lysis, this can be, e.g., sample homogenization or removing as

much organic and/or inorganic matter as possible. In parti-

cle-based analyses, increasing the MP to non-MP particles

ratio significantly reduces analysis time, as a lower number

of potential MP particles has to be measured. Commonly

employed procedures entail density separation to remove

inorganic compounds,23,24 and Fenton’s reagent

(H2O2þ Fe2þ)25 or enzymatic digestion to remove organic

residues.26 (iii) The previously purified MP sample has to be

analyzed in detail by an appropriate analysis technique. All

three steps are equally important and have to be carried out

with extreme care in order to avoid contamination from MP

from either equipment used or simply the laboratory air

itself. Taking and evaluating blind samples (i.e., samples with-

out any MP that undergo the exact same procedure) for

assessing the level of contamination is critical.

Our work focuses on the third part of the aforemen-

tioned procedure, the chemical analysis of the purified

sample. Numerous works can be found throughout litera-

ture that suggest different procedures for MP assessment in

environmental samples.19,27 Notable examples are: Selecting

single particles under a microscope for Fourier transform

infrared (FT-IR) measurements in attenuated total reflection

(ATR),28–30 transmission31–33 or reflection,34–36 FT-IR ima-

ging,6,31,37,38 Raman microspectroscopy,7,37,39 pyrolysis–gas

chromatography–mass spectrometry (py-GC-MS),40–42 or

thermoextraction and desorption coupled with gas chroma-

tography–mass spectroscopy (TED-GC-MS).41,43–45 The

current key challenge is to streamline suitable methods

into easy to apply tools that do not require a team of scien-

tists to be performed. The future of MP analyses lies in scal-

ing up the number of samples, thereby obtaining more

comprehensive datasets. Only by significantly expanding

campaigns to sample environments at higher frequency

both spatially and temporally, effective measures against

MP pollution can be derived. Thus, the methods we develop

have to be fast, affordable, and easy to learn and use, while

not sacrificing information, accuracy, or reliability.

In general, the MP content of any sample can be deter-

mined in terms of mass or number of MP. Mass-based tech-

niques, such as py-GC-MS or TED-GC-MS, report total

mass but cannot infer from how many individual MP this

mass is derived. However, when using a particle-based

approach, mass ratios (e.g., milligrams MP per kilogram

dry weight of sample) can only be assumed by estimating

particle volumes and applying bulk density values.5 On the

other hand, particle-based techniques measure each par-

ticle individually to obtain both the chemical composition

and size, thereby providing more detailed information. The

most frequently employed techniques for that approach

employ FT-IR or Raman microspectroscopy.17,37 Therein,

MP samples are filtered onto suitable substrates and then

analyzed spectroscopically to determine size and chemical

nature of each particle.

Both analytical approaches, thermoanalysis and vibra-

tional spectroscopy, come with their advantages and cav-

eats. The huge advantage of a mass-based technique is its

high sample throughput. For example, state of the art py-

GC-MS or TED-GC-MS takes only a few hours to process

100 mg of an environmental sample that does not need

specific treatment other than careful homogenization.41,45

This makes these techniques very promising candidates for

widespread environmental monitoring in routine operation.

In contrast, the spectroscopic techniques require elaborate

sample purification and can take significantly longer for

measurement and data processing. Their main benefit, how-

ever, is that the analysis happens on the particle level, i.e.,

each particle is registered individually with information on

shape, size, chemical classification and, in most cases, even

color. This information is currently of high relevance for

elucidating sources and sinks of MP particles. Additionally,

knowledge of polymer type and particle size/shape is also

critical for modeling pathways of MP,46–48 as well as for

assessing potential MP impacts.15,16 Given the importance

of this information, spectroscopic particle analysis is cur-

rently widely preferred for MP studies, despite the lack of

efficiency compared to mass spectrometry. Therefore,

improving the efficiency of these approaches is of para-

mount importance for the future of MP research.

This study contributes significantly to this issue by

enabling the microspectroscopic particle analyses to be

employed far more efficiently.

Microplastic Analysis Using FT-IR and
Raman Microscopy: State of the Art

Both methods of vibrational spectroscopy can generally be

used in two inherently different modes (Fig. 1). The first

one is the imaging approach, which entails complete spec-

troscopic measurement of the entire sample surface in

order to obtain an individual spectrum for each ‘‘pixel’’.

After evaluation of all spectra, a chemical image is obtained

in which each pixel is assigned to a certain material class.

Neighboring pixels of the same class are then considered

one particle. In contrast to that, the second approach is to

first acquire an optical image of the entire filter and to run

an automated particle recognition algorithm that identifies

all present particles. Spectra then need only to be acquired

where particles were found.

1186 Applied Spectroscopy 74(9)



The first and most obvious difference between both

approaches is the number of acquired spectra.

Considering 10 000 particles on a filter of 10 mm� 10 mm,

the imaging approach requires acquiring 106 spectra in a

resolution of 10 mm, whereas only 104 have to be taken for

the particle recognition approach. Requiring 100 times more

spectra for imaging renders both data acquisition and evalu-

ation, a particular challenge. Spectra acquisition can only be

done in reasonable time scales, when array detectors are

used, such as the focal plane array (FPA) detector, which is

capable of acquiring up to 128� 128 (¼16 384) spectra sim-

ultaneously.49 Unfortunately, such detectors are only avail-

able for FT-IR spectroscopy, which makes Raman

spectroscopy not feasible for high-resolution imaging of

larger surfaces. The imaging approach is also more challen-

ging regarding data evaluation.6,50 Conventional correlation

of the measured spectra to databases is becoming either

very slow with very high spectra numbers or requires very

high computational power. Chemometric tools, such as clas-

sification by random decision forest, can significantly speed

up analysis, but are far from trivial to set up and are limited in

the number of substance classes they can distinguish.18

In contrast, the approach using optical image recognition

to identify particles requires less sophisticated hardware

and allows for a higher flexibility in choosing the evaluation

strategy. Both chemometric classification and ‘‘conven-

tional’’ database evaluation are readily applicable.

Furthermore, FT-IR and/or Raman microscopy can be

used similarly to perform the chemical identification,

which is advantageous as Raman, unlike FT-IR, can analyze

particles below 10 mm. The practically achievable lower

limit strongly depends on instrumental setup and type of

sample, the theoretically possible value is 0.4mm. On our

routine setup (20� objective), we can confidently work

down to a size of 2–3 mm. The main challenge remains

the particle recognition step, as finding and tuning a suitable

image segmentation algorithm is anything but trivial.

However, once a reliable particle recognition has been

achieved, additional information about particle color or

morphology can be derived from the optical image.

To draw a conclusion from this short comparison of

imaging and particle recognition approaches, the initial per-

spective of making MP analysis techniques more suitable for

large-scale monitoring strategies has again to be con-

sidered. Considering this perspective, the imaging approach

has distinct disadvantages, namely costly equipment (FPA

detector), less flexible spectra evaluation, and finally the

practical limitation to FT-IR, thus excluding Raman meas-

urements for MP particles< 10 mm. Thus, we believe that

pushing forward the particle recognition approach is the

strategy of choice for greatly expanding the scale in which

MP analyses are performed, not only by highly trained MP

analysis teams but also by a broader community.

As stated in the Introduction, the key challenge is to

decrease the required measurement time for a given par-

ticle analysis. Considering the complex nature of the envir-

onmental samples on the one side, but also of the

respective spectroscopic workflows on the other side,

clearly shows that there cannot be a universally valid for-

mula to decrease measurement time. Instead, an analysis

procedure should offer the user the highest possible free-

dom in designing and performing the particle analysis,

respecting the constraints coming from the nature of the

samples and the accessible laboratory equipment.

Herein, we present our realization for MP analysis using

the optical particle detection approach that can be com-

bined with both FT-IR and Raman spectroscopy. We devel-

oped a new software for bundling all steps in the analysis

pipeline in an easy to use package while providing the high-

est possible flexibility. Gepard Enabled PARticle Detection

Figure 1. Imaging and particle measurement as two different approaches for analyzing particles on a filter substrate.
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(GEPARD) is an open-source project under the GNU

General Public License. It can be downloaded from a

GitLab repository and used freely.51 Moreover, the software

is designed in a modular way and can be modified and

extended by others for further increasing its usability in

the field. In this manuscript, we describe the application of

GEPARD in combination with Raman and FT-IR microspec-

troscopy and present first results in the field of MP analysis.

Materials and Methods

Instruments

The Raman imaging microscope (WITec alpha 300R) was

equipped with 532 and 785 nm lasers together with dedi-

cated detectors. Spectra are acquired with gratings of 600

or 1200 l/mm. For typical instruments, we use the 532 nm

laser on the 600 l/mm grating, which allows acquiring the

entire spectral range (150–3600 cm�1) with one shot, at a

spectral resolution of �3.5 cm�1. Image acquisition can be

done in brightfield (BF) and darkfield (DF) at magnifications

of 5, 20, 50, and 100�. The step size of the motorized stage

is 100 nm. The entire microscope can be remote-controlled

through a component object model (COM) interface (inter-

process communication developed by Microsoft) to the

WITec control software.

The Raman microscope (Renishaw inVia Qontor) can

irradiate with lasers of wavelengths of 532, 633, and

785 nm. The switching of lasers and gratings (600 l/mm,

1200 l/mm, or 1800 l/mm) is fully automated. By default,

the combination of 532 nm laser and 600 l/mm grating is

used, resulting in a spectral range from 150 to 3600 cm�1

at a spectral resolution of approx. 7 cm�1. Optical image

acquisition works in both DF and BF at magnifications of 5,

20, 50, and 100�. The automated stage has a step size of

100 nm. The liveTrack feature allows for an automated

focus tracking in real time. The microscope can be

remote controlled via a network interface.

The FT-IR microscope (PerkinElmer Spotlight 400) fea-

tures a mercury–cadmium–telluride (MCT) line-detector

for imaging and an MCT single-detector. Spectra can be

acquired in transmission, reflection, or micro-ATR with

visual autofocus. The microscope cannot be remote

controlled, but allows importing seed-point lists for pre-

defined measuring layouts. The seed-lists contain informa-

tion about location (x,y,z) and aperture configuration (with,

height, rotation angle) of each particle. In default operation,

we acquire spectra with eight scans per acquisition at a spec-

tral resolution of 4 cm�1.

The optical microscope (Zeiss Imager.Z2m) allows rapid

acquisition of optical images at very high fidelity at magni-

fications of 5, 10, or 20� in either BF or DF. Multiple z-

levels can be acquired for obtaining an image, with optimal

depth-of-field and height map being extracted. Both images

can be imported into GEPARD to create a project file that

can be used for subsequent particle recognition and spec-

tral measurement. The Zeiss software itself features mani-

fold image segmentation and processing modules.

MP Analysis Pipeline with GEPARD

GEPARD is designed to cover all steps in the analysis pipe-

line from optical image acquisition over spectra acquisition,

combination of particle and chemical data to generation of

final reports, both visually and in spreadsheet form. The

software currently supports importing images from Zeiss

microscopes, controlling Raman microscopes from WITec

and Renishaw to allow for image acquisition and particle

measurement. Furthermore, particle position data can be

exported to FT-IR microscopes from PerkinElmer. Each

step is developed to minimize the need for human adjust-

ments, thus keeping human bias and required time at the

lowest possible limit.

GEPARD is designed around a particular analysis work-

flow, as summarized in Table I. First, a full image of the filter

is acquired during an optical scan. That image is used to run

a particle recognition for identifying particles, determining

their size, shape, and color and to set the coordinates for

the subsequent spectroscopic measurement. In the spec-

troscopic scan, a spectrum is acquired for each particle. All

acquired spectra are then evaluated to obtain a chemical

classification (i.e., particle type) to each spectrum. All spec-

troscopic classifications are then combined with the already

determined particle characteristics. The results can then be

reviewed and edited, if necessary. Finally, the results can be

displayed graphically and exported into different formats.

Table I. Individual steps of the analysis pipeline using GEPARD.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Image acquisition Particle recognition Spectroscopic

measurement

Spectra evaluation Review/edit results Data output

GEPARD, Zeiss GEPARD WITec, Renishaw,

PerkinElmer

TrueMatch (refer to the Spectra

Evaluation section)

GEPARD GEPARD

1188 Applied Spectroscopy 74(9)



The lower row in Table I indicates that most tasks are

directly integrated into GEPARD. The following sections

will review the individual steps in detail.

Image Acquisition/Optical Scan

The first step is to acquire an optical image of the filter. In

the case of a WITec or Renishaw instrument, the optical

scan can be done either with the Raman microscope or

with a dedicated optical microscope. In the case of the

PerkinElmer FT-IR microscope, the optical scan must be

performed on an external microscope, as there is no

technical possibility to control the instrument from an

external software. By using a dedicated optical micro-

scope, such as the Zeiss Imager.Z2m, this allows for redu-

cing image acquisition time while providing a higher fidelity

of the acquired image. The use of an external microscope

requires using a sample tray with fixed position markers

to transfer the coordinate systems from the optical to the

Raman/FT-IR microscope. The mathematical error of the

coordinate transfer can be at 1 mm for each marker or

even less. However, when bringing a sample from one

instrument to another, also the precision of the micros-

copy stages has to be considered, which can be about a

few mm. Further deviations can occur when the filter is

not fully fixed on the microscope tray or if particles can

move on the table. Having image acquisition and particle

measurement on different instruments requires very care-

ful sample handling and should only be considered for

larger particles (>10 mm) and only after thorough testing.

The GEPARD interface offers a variety of parameters

for controlling the image acquisition procedure. The user

can set three to five positions that define the border of

the region of interest, in which images will be acquired.

The z-focus of all initial positions is adjusted by the user

to define a surface tilt for the filter in the microscope

frame. A background-removal option is integrated to

account for brightness gradients within each tile, resulting

from non-constant illumination of the respective filter

area. Next, a number of z-levels for a so-called focus

stacking approach are defined. The number of z-levels

and the maximum focus height relative to the tilted

filter determine how many focus steps are done and at

what z-levels. The focus stacking gives two advantages:

First, an image with highest possible depth of field is

obtained, which is beneficial for the particle recognition

step. Second, a height map of the filter and particles is

calculated and stored that allows for focusing the laser

during the Raman scan on the surface of the particles.

A detailed breakdown on the image acquisition options

is given in the supporting information (Image Acquisition

with GEPARD section, Supplemental Material).

The optical scan procedure is tailored to minimize the

required image acquisition time but also to retrieve height

information of the sample. Consequently, elsewhere-

described procedures for artificially pressing fibers on

the filters to force them into the focal plane are not

necessary.6 The image is contained in full resolution

and can be interactively reviewed within the GEPARD

sample view.

Particle Recognition

After having obtained the full optical image, the actual par-

ticle recognition step has to be performed. Effective and

reliable image segmentation is highly challenging, and the

employed algorithms have to be chosen and configured

carefully. The challenge for GEPARD is to process images

of very different natures (i.e., MP samples from drinking

water are much cleaner than MP samples from wastewater

treatment sludge, even after sample treatment). As all

images are stored and processed in full resolution, typical

image sizes for 10� 10 mm filter acquired with 20� mag-

nification are in the range of 17 000� 17 000 pixels.

Significant progress was achieved throughout the past

years using semantic image segmentation (i.e., using

machine learning) on challenging images to achieve very

convenient segmentation results.52–54 Despite their high

capability in recognizing complex particle patterns, seman-

tic image segmentation techniques require training proced-

ures that are both difficult to set up and computationally

expensive. Consequently, they are usually restricted to

images of rather low-resolution images, with 8192� 4096

pixels are already considered very large and need to be

handled with particular approaches.55 Conversely, simple

segmentation by thresholding the image into fore- and

background is very fast but only works well for non-over-

lapping particles, which is often not the case.

We decided to implement an interactively controllable

watershed segmentation to find a compromise between

quality of segmentation and computation time/expense.

Watershed segmentation allows separating adjacent or over-

lapping particles and works by flooding the image from

marker points that represent particle centers. Particle bor-

ders are defined by adjacent water basins that meet during

the flooding process.56 As already demonstrated in a

recently published article, watershed segmentation can

easily lead to strong over-segmentation, i.e., many particles

are fragmented into numerous small particles.56–58

A detailed description of all parameters can be found in

the Particle Detection with GEPARD section in the

Supplemental Material, and shall be skipped here. Instead,

the most important features are briefly summarized in the

following list:

(i) Contrast adjustments of the acquired image by a user-

defined contrast curve or adaptive histogram equaliza-

tion (contrast limited adaptive histogram equalization,

or CLAHE, for compensating local inhomogeneity of

image brightness).

Brandt et al. 1189



(ii) Thresholding to define particles that are above or below

a certain brightness, but also in between two set bright-

ness values or vice versa.

(iii) Size filtering to exclude very small and/or very large

particles.

(iv) Manual corrections to split particles or to recombine

over-segmented particles.

Our particle recognition leads to good results in a broad

variety of cases, as shown in Fig. 2. However, the method

frequently leads to over-segmentation, which results in more

than one measurement per particle, thus increasing meas-

urement time. However, having more than one spectrum per

particle increases the confidence in the spectroscopic iden-

tification of the respective particle. Segmented particles that

are too heavily segmented can be recombined in the final

particle evaluation step (Particle Evaluation section) to

obtain reliable particle size information. These manual cor-

rections only have to be done for the relevant MP particles

(usually about 1% of the particles), which makes the post-

processing possible in little time. Particle count and size dis-

tributions of all other particles, though, will be biased by

over- or under-segmentation. However, the interpretation

of size and count of non-MP particles is highly questionable

anyways, as already the previous sample workup steps (e.g.,

density separation or digestion) make these values not rep-

resentative for the environmental sample.

Spectroscopic Measurement

After completing the particle detection, the actual spectro-

scopic scan can be initiated. GEPARD allows for controlling

the measurement directly through the instrument interface

to the Raman microscopes. A device-specific window

prompts measurement parameters, such as number of

accumulations, integration time, or laser power. The

order in which all particles are measured is optimized by

solving the traveling salesman problem through a simulated

annealing approach,59 thus reducing the distance the stage

has to move by approx. 20% compared to an intuitive

meandering line scan technique. For measuring particle

amounts in the thousands to ten of thousands, we chose

relatively short Raman scan times per particle, such as five

accumulations with 0.5 s integration time. Both an increas-

ing number of accumulations or longer integration times

would improve the signal-to-noise ratios of the acquired

spectra at the cost of accordingly longer experiment time

and, thus, less sample throughput. Balancing out spectrum

quality and sample throughput is a delicate endeavor and

has to be done carefully for each analytical task. A way to

improve the spectral quality is to increase the number of z-

levels during the optical scan for increasing the accuracy of

the z-focus during measurement. Alternatively, instrument

specific hardware options for tracking focus height (i.e.,

Renishaw Qontor Live Track) can be a great benefit for

increasing focus accuracy without significantly impacting

the overall measurement time.

We currently measure the entire filter surface with all par-

ticles and do not make use of any aliquotation approach.

Measuring only a fraction of the filter decreases overall meas-

urement time, thus increasing sample throughput.

Alternatively, keeping the overall measurement time constant,

the acquisition time for each spectrum can be increased for

this fraction of the filter, thus increasing the quality of the

performed measurements. GEPARD only allows for the def-

inition of a fraction of particles to be measured currently. Any

other subsampling approach can be integrated on demand,

due to the open-source nature of GEPARD.

The workflow for using GEPARD for FT-IR measure-

ments on the Perkin Elmer instrument is currently imple-

mented in a workflow that requires acquisition of the

optical image on the Zeiss light microscope (LM). A

sample tray with position markers in the micrometer size

is used to transfer the coordinates to the FT-IR instrument.

GEPARD needs to import three files from the LM: (i) the

color image, (ii) the height map, and (iii) an extensible

markup language (XML) file with all metadata about the

sample, such as the exact coordinates of the position mar-

kers. Before importing these files into GEPARD, the sample

tray has to be mounted into the FT-IR microscope and the

coordinates of all position markers have to be determined

manually. When importing the LM files into GEPARD, the

user is prompted to input the position marker coordinates,

which allows GEPARD to transfer the coordinate system

from LM to FT-IR microscope. After having performed the

particle recognition as described in the previous step, a

script is run to determine the FT-IR aperture configurations

for all detected particles. Therefore, an algorithm finds the

largest rectangle fitting on each particle without leaving its

respective boundary. Ultimately, a *.slf-file is generated and

exported that can be imported from the FT-IR microscope’s

Spectrum software to set up a measurement with all

detected particles (Figs. 6a and 6b show an example of

that setup). The FT-IR measurement is entirely configured

Figure 2. Example results of particle recognition on cryo-milled

polymer particles. The necessity and potential of watershed seg-

mentation is demonstrated by touching particle boundaries in

several cases. Red spots mark Raman measurement spots, white

points are user-defined seed points for guiding the watershed

algorithm.
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in the Spectrum software. After finishing the measurement,

the acquired spectra are exported into a *.csv file to be

processed in the following spectra evaluation step.

Spectra Evaluation

All spectra have to be evaluated to determine each par-

ticle’s chemical nature. The spectra evaluation is the only

step, which is currently not yet implemented in GEPARD.

Instead, we use the commercial software TrueMatch

(WITec) for batch spectra correlation and import the

results back to GEPARD. We created dedicated databases

containing relevant selections of standard polymers, addi-

tives, and other substances that are likely to be found in

environmental samples (e.g., fish scales, mussel shells). Each

database contains 50 to 100 spectra, thus making the spec-

tra correlation very quick and restricting the results to

reasonable entries. We perform background subtraction

and take the first derivative of the spectra.

The main challenge is to handle spectra that were

acquired in short time and, consequently, are characterized

by a low signal-to-noise ratio. As every spectra correlation

process can lead to wrong classifications, all automatically

obtained results can be revised and checked. The

TrueMatch software allows quickly browsing through the

results and setting flags to each spectrum. By such an

approach, the automatic results can be overwritten, thus

increasing the overall result confidence.

Choosing appropriate settings for the database search is

critical for obtaining meaningful results. In most cases, we

use the build in shape background subtraction with a shape

size of 200 points, use the first derivative for correlation

and set the hit quality index (HQI) to represent the cor-

relation coefficient (ranging from 0 to 100). After sorting

the search results according to their HQI, we manually

revisit all spectra down to an HQI of 5 to exclude false

classifications. That threshold parameter strongly depends

on all chosen database search parameters and, for repro-

ducibility of results, keeping these fixed is important. The

list of results and their respective HQIs is then saved to a

text file which can be opened in GEPARD. There, the final

HQI threshold can be set to determine from which HQI on

a particle is considered as ‘‘unknown’’. We usually keep this

threshold at an HQI of 5 as well.

Particle Evaluation

GEPARD offers rich possibilities to review and edit par-

ticle results after having imported the spectra results. Each

detected particle is assigned with a specific color for easy

visual identification of particles on the filter surface. A

second additional window displays statistics about found

Figure 3. Overview of the particle analysis interface using a Raman microscope. The sample is a soil sample (see Figure 5 and

Supplemental Material). All spectra with a hit quality index (HQI) below a given threshold (min HQI¼ 5 in this example) are labeled as

‘‘unknown’’.
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particle types and sizes. Figure 3 shows the analysis

window that readily allows for the extracting information

about:

Particle type histogram: How many MP particles were

found of which polymer type?

Particle size histogram: What is the size distribution of

these MP particles?

For each individual particle: Size, classification, color, shape

and spectrum or spectra of each MP particle.

Each MP particle spectrum can be overlaid with reference

polymer spectra that can be imported from ASCII for-

matted text files.

The analysis window is linked to the particle image of

the main window. Clicking on any particle in the main

window displays the corresponding particle information in

the analysis window and vice versa, selecting a particular

particle in the analysis window makes the main window

focus on the corresponding particle.

GEPARD’s analysis interface is designed with the same

philosophy as the previously described particle detection.

We implemented algorithms that process all particles auto-

matically and derive parameters, such as size, shape, and

color. However, given the vast diversity of particles in envir-

onmental samples, these algorithms can lead to wrong

results in some cases. The user has not only the opportun-

ity to review all results but also to check and override them

in detail accordingly.

It is highly recommended to perform a critical review of

the relevant results. The term ‘‘relevant’’ relates to actual

MP particles in our scope. Given that MP usually amount to

less than 1% of all particles, this greatly reduces the number

of particles that have to be reviewed, which makes the

post-processing relatively quick.

The wide array of reviewing options of GEPARD (refer

to the Reviewing Particle Measurement Results section;

Supplemental Material) is a major strength of our particle

analysis approach. We combine and display information

from the optical image, particle recognition and spectral

analysis. Making it intuitive and quick to review ‘‘relevant

particles’’ (here: MP) greatly increases the confidence

of the generated results, thus improving their scientific

quality.

GEPARD currently offers two ways of exporting the

particle results. First, an excel spreadsheet can be gener-

ated, containing the information of each individual particle,

together with a summarized table listing the number of

particles in certain size classes of each particle type.

Second, an interface to connect to an SQL database is

included. Uploading all particles to a central database is

beneficial for making results accessible to all project part-

ners and allows storing all required metadata, which assists

in tracking the history of each individual particle from sam-

pling to final analysis.

Assessment of Measurement Quality

Confirming the reliability of any MP analysis is an important,

yet challenging step. Preparing a sample of known MP con-

tent is still a major challenge for MP round robin test,

where the performance across different methodologies

and laboratories is compared.

We decided to perform a simple experiment with arti-

ficially prepared samples for asserting correct function of

our method. We used commercially available spherical par-

ticles of polyethylene (PE) and poly(methyl methacrylate)

(PMMA) with narrow size distribution and different average

sizes. For PE, two batches were used with sphere diameter

ranging from 10 to 27 mm and from 106 to 125 mm, respect-

ively. The size of the PMMA particles was indicated to be in

between 53 and 63 mm. Particles of each of the three

batches were put on a silicon filter and the filter was sub-

jected to the herein described particle analysis procedure

using GEPARD with the Renishaw inVia Raman microscope.

Figures 4a and 4b show the outcome of the measurement.

The size-distribution plot clearly shows that the originally

employed particle types and sizes are reproduced correctly.

The photo of the filter with false-color overlay shows that

also aggregated particles of different types are distinguished

correctly.

GEPARD in Routine Operation

The herein proposed analysis procedure has been used by

the microplastics group of IPF Dresden in routine operation

for more than a year, on over 80 environmental samples;

originating from air, water, sediment, beaches, or soil.

Having routine operation and method development run in

parallel allows for effectively identifying tasks that can be

improved and/or accelerated by automatization. The

diverse nature of the samples we process confronts us

with new challenges in all aspects of not just image acqui-

sition, but also particle detection, spectra evaluation, revi-

sion, and final compilation of results.

Figure 5 shows the result of a soil sample from an agri-

cultural area close to Speyer, Germany. Details about sam-

pling and sample workup can be found in the Investigation

of a Soil Sample section (Supplemental Material) together

with example spectra. The final filtration was done on sili-

con filters with 50 mm pore size. Due to the relatively large

pitch of 100 mm, also smaller particles can be found on the

filter, but their number cannot be considered to be quan-

titative. Image acquisition was done directly within the

Raman microscope and took approximately 1.7 h per

filter. On the filter shown in Fig. 5, a total of 4862 particles

was detected and the Raman measurement took 4.9 h. In

addition, approximately 4 h of manual work was required

for setting up the measurement and thoroughly reviewing

the results as described in the previous sections. The pre-

sented sample is a complex soil sample with many fibers but

also particle agglomerations. Both are a particular challenge
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for the particle recognition, so we very critically review the

automated results. In simpler cases, the needed time for

that reviewing can be substantially lower. The Investigation

of a Soil Sample section (Supplemental Material) gives a

complete overview over measurement times of all filters

belonging to that sample, together with details of the par-

ticle recognition and the obtained spectra.

The example shows that approximately 2% of the mea-

sured particles were identified as MP particles, which,

according to our experience, is a relatively high value. It

Figure 4. Evaluation of the test sample, clearly showing the two different size distributions of polyethylene and the average sized

poly(methyl methacrylate). Image acquisition and Raman scan were performed on the Renishaw inVia microscope. (a) Example spectrum

and size distributions. (b) Representative section of the filter with color assignment of PE (blue) and PMMA (purple).

Figure 5. Results of the soil sample. (a) Example photo of one out of a total of nine filters from the complete 500 g (w/w) sample. (b)

Summary of MP from a total of 32 211 particles/fibers from all nine filters combined (measurement time: 1.3 d), of which 682 were MP

particles.
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is interesting to observe that the distribution of the par-

ticles on the filter is neither homogenous nor does it follow

any distinct pattern. This type of unpredictable particle dis-

tribution makes reliable subsampling, i.e., selection of small

but representative regions, difficult. We currently measure

each detected particle in order not to omit any MP particle,

which results in relatively short measurement times per

particle. Typical Raman setups use a laser power of 5 mW

and the acquisition of five accumulations with 0.5 s integra-

tion time per particle. Consequently, it is necessary to

handle many spectra with a low signal-to-noise ratio. The

current database approach does not always seem to yield

ideal results. Chemometric models based on spectral

descriptors could probably improve the overall quality,18

but are not yet implemented in the program.

Several methods for subsampling are described in litera-

ture to reduce the number of particles to measure without

significantly increasing the uncertainty of the measurement

result.39,60 Their validity, however, was not yet assessed

practically on the example of environmental samples. We

now start evaluating the suitability of different subsampling

methods retrospectively on the base of real-world samples.

The results to be published soon.

An example of the analysis of a water sample is shown in

the Investigation of a River Water Sample section

(Supplemental Material). The water sample was prepared

by fractionated filtration on both 50 mm and 10 mm silicon

filters. Due to the large hole-to-hole distance of 55 mm on

the 10 mm filters, also smaller particles can be found. Their

number, however, cannot be considered quantitative. The

example shows that the vast majority of particles is found

on the 10 mm filters, due to the exponential increase in

particle number with decreasing particle size. Eighty-five

percent of a total of almost 68 000 particles were found

on the 10 mm filters, which shows the importance of includ-

ing smaller particle sizes, if possible. As a result, 407 MP

particles were found, which corresponds to approx. 0.6%.

Again, approx. 85% of these MP particles were found on the

10 mm filters.

Figure 6 shows the result of a model sample measured

by FT-IR in transmission (resolution 4 cm�1, eight scans per

spectrum). For the model sample, cryo-milled particles of

polypropylene, polystyrene and polyamide were dispersed

in water and filtered onto our silicon filters, as described in

the Filtration onto Silicon Filters section of the

Supplemental Material. The capability to work with FT-IR

and Raman seamlessly is a key advantage of GEPARD and

helps in optimizing the general analysis strategy. For

instance, large particles can be measured by FT-IR and smal-

ler particles can be measured by Raman. Previous works by

Käppler et al. showed that there is no clearly preferable

method between FT-IR and Raman to identify MP par-

ticles.37 Thus, being able to measure with one method,

identify particles with unclear result and measure them

Figure 6. FT-IR measurement of a model sample containing polypropylene and polystyrene on a 50mm silicon filter. (a) Detail of

particle recognition in GEPARD based on dark field image recorded with Zeiss Imager. (b) Preview image in FT-IR microscope of the

same position showing imported aperture shapes. (c) Analysis of the FT-IR results in GEPARD.
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with the other technique, is a promising approach that

becomes accessible with GEPARD.

Conclusion

Spectroscopic methods are still key for a deeper under-

standing of the occurrence of MP particles in the environ-

ment. We portrayed our contribution to improve both the

analysis speed and reliability of these methods. We devel-

oped a software to cover an analysis pipeline, which is

compatible with not just Raman, but also with FT-IR-micro-

spectroscopy. The GEPARD package follows the concept of

particle analyses in four main steps:

(i) Optical image acquisition

(ii) Particle recognition

(iii) Spectroscopic measurement

(iv) Data evaluation and reporting.

Size, shape, color, and chemical classification are regis-

tered for each detected particle. GEPARD allows for the

reviewing and correcting of all results at any time via a user-

friendly interface, thereby increasing confidence in the final

result. All results can be visualized graphically in the form of

false-color overlays on the optical image as well as various

other diagrams, exported as Excel tables or uploaded into

an SQL database. Integrating all required steps into one

software package makes consistent data handling signifi-

cantly easier and reduces the required time to process a

sample.

GEPARD not only gives great flexibility in setting up and

performing MP measurements but also allows for the use of

different instruments, making GEPARD compatible with a

greater number of analyses laboratories.

We successfully applied our approach on a variety of

environmental samples from various different compart-

ments, ranging from air to soil samples. As such, we

assert that all included steps are not only designed to

work on prepared model samples, but can also be (and

have successfully been) applied to real-world samples.

The continuous and critical evaluation of all analysis steps

assists in the ascertaining of areas where further improve-

ments can be made. Main aspects to improve are: (i) a more

powerful particle recognition, especially in the case of over-

lapping particles, and (ii) a fully implemented spectral evalu-

ation that can work, both by correlating spectra with

databases and by applying chemometric tools. Random

decision forests proved to be efficient in classifying noisy

spectra of environmental MP samples in relatively short

time18 and thus, there is the potential to increase both

confidence and speed of the spectra evaluation.

Additionally, we have further improved the analysis tool

by enabling it to process multiple measurements simultan-

eously. This facilitates the consolidation of data in cases

where multiple filters belong to a single sample.

Moreover, comprehensive statistics on particle occurrence

across multiple samples are useful to identify point

contaminations.

The GEPARD package is open source and free to use

and edit. Thus, it can be extended and modified by any

researcher whom requires particular adjustments for spe-

cific objectives.
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