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Abstract

Polymers are highly diverse and understudied materials from an environmental toxicity point of view. For
the past decades, polymers have largely been out of scope regarding detailed safety assessment in most
regulatory programs as they are assumed to not possess relevant toxicological properties due to their size.
This regulatory exclusion is currently being reconsidered. This chapter discusses the available information
about selected cationic polymers and outlines (Q)SAR ((Quantitative) Structure-Activity Relationship)
approaches that could be used to develop new models to demonstrate potential aquatic toxicity of
polymers. The amount of publicly available, high-quality environmental toxicity data on industrial polymers
such as cationic polyquaterniums is extremely limited. Given the large size (dimension and molecular
weight) of the materials, typical hydrophobicity-driven toxicity is not expected. Relevant descriptors for
cationic polymers need to be identified. Molecular weight and charge density are well-known physical-
chemical attributes that are suspected to be correlated with aquatic toxicity, but there might be other
relevant descriptors as well.
We suggest models that predict polymer properties may be useful for estimating relevant properties

regarding toxicity. Moreover, novel fragment-based 2D and 3D hologram (Q)SAR (H(Q)SAR) may prove
relevant in determining these properties that can be used to derive hypotheses about toxic mechanisms and
guide experimental test designs. In a regulatory context, (Q)SARs have to be transparent and scientifically
robust which extends to fragment-based models that may be useful in categorizing polymers. The toxicity
of category members can then be experimentally explored, and read-across strategies developed within the
category.
The authors of this chapter are pursuing polymer (Q)SAR strategies in the coming years via generation of

novel experimental and computational data on polyquaterniums. We will also evaluate the potential for
fragment-based (Q)SARs for polymers in REACH.
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1 Introduction

Polymers are large macromolecules consisting of repeating mono-
mer units. Polymers are an exceptionally diverse group of com-
pounds and are used in a large range of applications. Polymers
may be described as linear, branched, or cross-linked. They may
exist as homopolymers and have one repeated monomer, or they
may be copolymers and contain two or more monomers combined
in random or ordered approaches. While many polymers in com-
merce are synthetic, there are also natural polymers or biopolymers
that are important building blocks of life, such as amino acids,
proteins, and cellulose. Many polymers are soluble and dispersible
in water. These are often used in consumer and personal care
products, pharmaceuticals, water treatment, and wood preserva-
tion. Novel uses and applications in biomedical and nano-industries
are expected to grow significantly in the coming years.

1.1 Current

Regulatory View

of Polymers

Historically, polymers have been subject to exemptions or reduced
regulatory requirements in countries practicing chemical legisla-
tion. The assumption was that the high molecular weight and
reduced reactivity of polymers in environmental compartments
were viewed as lower risk to human health and the environment
when compared to lower molecular weight substances. Most chem-
ical legislations have adopted 500 Da as the highest molecular
weight in scope, which is based on one component of Lipinski
rules of bioavailability whereby substances that are >500 Da are
considered less bioavailable. Since polymers are predominantly
represented by higher molecular weight componentry, it has long
been assumed that much of the polymer is not bioavailable and
inert in the environment and the focus of chemical registrations and
data needs has been more on lower molecular weight impurities
and unreacted monomers as well as additives (non-intentionally
added substances, NIAS, and intentionally added substances,
IAS). The focus of most regulatory programs is generally on new
polymers, not existing polymers already in commerce. However,
through K-REACH, Korea is the first country to require registra-
tion of current polymers, with all existing chemistries greater than
1 metric ton requiring registration by 2030. In addition, Environ-
ment Canada has polymers included in their Chemical Manage-
ment Program, and the agency recently published draft safety
assessments for the polyamines (December 2016).

For new polymers requiring registration, the criteria used by
many global regulatory agencies to identify “polymers of low con-
cern” include molecular weight and levels of monomers, in addi-
tion to the presence of specific structural features or functional
groups. The “polymers of low concern” concept is intended to
guide prioritization of polymer review by regulators. While this
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approach has been the practice of many global regulatory agencies,
polymers have been exempted from chemical registrations by the
European Chemicals Agency (ECHA).

Previous guidance from ECHA on polymer registration was
done with the view that polymers would eventually require regis-
tration. Below is an excerpt from Article 138 Section 2 [1]
(ECHA):

“The (European) Commission may present legislative proposals as soon as a
practicable and cost-efficient way of selecting polymers for registration on
the basis of sound technical and valid scientific criteria can be established,
and after publishing a report on the following:

(a) The risks posed by polymers in comparison with other substances;

(b) The need, if any, to register certain types of polymer, taking account of
competitiveness and innovation on the one hand and the protection of
human health and the environment on the other.”

In recent years, the simplified view of the potential risks asso-
ciated with polymers has received increased scrutiny, and with the
polymer exemption under REACH being revisited, the expected
outcome is starting approximately in the year 2023; polymers
identified as “polymers requiring registration” (PRR) will come
within the scope of REACH. This activity suggests the potential
reapplication of current REACH methods, such as categorization
and use of (Q)SAR, to characterize and estimate safety data and
even to support grouping and read-across approaches for these
materials. The use of (Q)SAR may be of special interest to regula-
tors due to the limited publicly available data for polymers. It is
likely many suppliers and downstream users of polymers have pri-
vately held data, but this information is often protected as confi-
dential business information (CBI) due to the competitive
environment of polymer innovation. Without unrestricted access
to environmental safety data on polymers, the need for (Q)SAR
development becomes more acute and relevant for polymer regis-
tration with the potential to use (Q)SAR to predict toxicity of
polymers in lieu of testing.

As mentioned above, the “polymers of low concern” approach
is based on the assumption that there is little toxicological concern
expected for polymers due to their decreased bioavailability as a
result of their significant molecular weight and their inability to
cross biological membranes. Many (Q)SAR models used to esti-
mate environmental fate and effects have not included large molec-
ular weight chemistries in their training set; therefore, (Q)SARs are
not intended to be useful predictors for large molecular weight and
complex polymers. Most (Q)SARs used to estimate toxicity are
based on log Kow as a surrogate for hydrophobicity/hydrophilicity
or contributions of certain functional groups or structural features.
Log Kow are generally estimated using fragment-based approaches,
leading to a gross overestimation for high molecular weight
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polymers. Furthermore, polymers are classic forms of UVCBs
(Chemical Substances of Unknown or Variable Composition,
Complex Reaction Products and Biological Materials) which are
difficult to devise (Q)SARs for as they are not discrete chemical
entities. There is, however, a somewhat historical (Q)SAR for
polymers in ECOSAR in the EPI Suite [2], which is also built
into the OECD (Q)SAR toolbox. These (Q)SARs were developed
using a set of data from polymers exclusively.

In the mid- to late 1990s, the USEPA conducted a review of
more than 10,000 polymeric substances notified to the USEPA [3]
for market access, and based on this exercise, a guidance document
was developed along with (Q)SAR domains for these materials.
Although this guidance received a modest update in the
mid-1990s [3], it remains the main reference point for the docu-
ment (USEPA) [4].

The ECOSAR models are, in essence, based on chemicals with
specific mechanisms of action causing excess toxicity (greater toxic-
ity than that predicted by baseline toxicity) and compounds with-
out a specific mechanism of action. There are a couple dozen
known mechanisms of toxicity (e.g., organophosphates and
others). However, the majority of compounds are nonspecific and
have what is known as a narcotic mechanism of action (typically
more than 75% of all chemicals) [5].

The narcotic mechanism of action, also known as baseline
toxicity, is based on the assumption of disruption of the cell mem-
brane integrity. This means that the critical cell membrane function

Fig. 1 Cell membrane (Colorbox)
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necessary to sustain homeostasis in the chemical environment of
the cell is impaired and the cell will die. The cell membrane (Fig. 1)
is shared among all forms of life on Earth and is therefore a very
good proxy for toxicity as the disruption of the cell membrane
integrity will affect all life.

The mechanism of cell membrane disruption has not been
entirely clarified, but it is usually characterized as a puncture or
shift in fluidity of the lipid bilayer protecting the cell so that the
functions needed to maintain homeostasis are impaired (e.g., efflux
pumps or ligands are closed or lost). Some compounds can pene-
trate the membrane via pumps and receptor ligands in the mem-
brane; these are typically the compounds with excess toxicity.
Hence, an experimental proxy for the cell membrane was needed,
and n-octanol/water partitioning coefficient was identified as a
good model for the partitioning of chemicals between water and
lipids such as the lipid bilayer. The log Kow expresses the ability of
the compound to disrupt the cell membrane, and, hence, the most
significant acute environmental toxicity descriptor was defined
[6]. Toxicity is derived from Greek with the original meaning
“poisons arrow” and is defined as a compound’s ability to penetrate
the cell membrane. The Paracelsus toxicity theorem that dose makes
the poison we have used in toxicology for the past centuries is
therefore enabled.

The aim of this chapter is to discuss the potential possibilities
and challenges with the development and use of environmental
toxicity (Q)SARs for polymers in a regulatory context for
REACH. With current knowledge and available computational
tools, we will explore how to build on the work by USEPA a
quarter of a century ago and develop novel (Q)SARs for relevant
polymers and used in anticipated REACH registrations. It is already
clear that chemical assessments in REACHwill not utilize (Q)SARs
directly to satisfy registration requirements for specific endpoints
(e.g., acute fish toxicity) but they may be exceptionally important in
the establishment of chemical categories or groupings thereby
lessening testing needs. The chapter will only take into consider-
ation (Q)SAR and read-across as tools for risk assessment of poly-
mers in a broad sense. Some details of the methodology involved in
(Q)SAR and read-across will be discussed in Subheading 2 below
after we have briefly reviewed the available data and provided a
couple of examples.

2 Materials and Methods

Polymers as a group contain a wide variety of materials with differ-
ing structural attributes, functionalization, and physical/chemical
properties. Polymers are composed of repeating monomer units,
and copolymers are made up of more than one species of monomer.
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2.1 Compounds:

Polymers—A Brief

Overview of Chemical

Diversity and Available

(Q)SARs

The copolymers are classified by how the units are arranged in the
chain. The major groups include alternating, random, and block
copolymers. Branched copolymers have a single main chain with
one or more polymer side chains that are grafted or have branching
that form other architectures. This complexity and diversity in
polymeric species and structure present a significant challenge for
their assessment and modeling. Polymers may contain structural
alerts and/or specific functionalized properties (e.g., in pharma-
ceuticals and biocides) and may require specific toxicity analysis.
Others may be completely toxicologically inert or have specific
features and uses that warrant further assessment. It therefore
makes sense to further define these materials.

According to USEPA definitions, compounds with a molecular
weight greater than 1000 Daltons are too large to pass through the
cellular membrane and are therefore unable to exert toxicity in a
traditional manner. However, these compounds could cause
mechanical effects (e.g., gill clogging) at high concentrations
(e.g., typically observed at >1000 mg/L). Mechanical effects
including binding to external and internal (e.g., gut) biological
surfaces which are not “toxicity” in the traditional sense but for
biological organisms may still be ecologically relevant. Polymer
safety assessments may include separate considerations for the poly-
mer, oligomers, and monomers depending on the polymer compo-
sition. USEPA [4] divides polymers into three categories based on
the average molecular weight (MWn) and the amount of low
molecular weight components (LMW):

Category 1: Polymers with low average molecular weight
(MWn <1000 Daltons). These can potentially be assessed as dis-
crete structures in EPI Suite, within the normal limitation of the
software, as long as the composition and structure of the polymer is
known [4, 6].

Category 2: Polymers with high average molecular weight
(MWn >1000 Daltons) and large LMW material composition
(�25% with MW<1000 Daltons; �10% with MW<500 Daltons).
The environmental toxicity of these polymers can be assessed;
however, oligomers may need separate assessment to account for
any increased toxicity due to their lower molecular weight [4].

Category 3: Polymers with high average molecular weight
(MWn >1000 Daltons) and minimal LMW material (<25% with
MW <1000 Daltons; <10% with MW <500 Daltons). These are
generally assessed solely as the polymer (USEPA) [4].

The aquatic toxicity of polymers is influenced by solubility.
Insoluble polymers are not expected to be toxic due to lack of
bioavailability. Typical acute aquatic toxicity values for these poly-
mers are >100 mg/L or > 10 mg/L for acute and chronic tests,
respectively. However, physical or mechanical effects may occur if
the insoluble polymer exists as a fine particle. Indeed, this is the case
for microplastic particles [7].
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Polymer charge (neutral, anionic, cationic, amphoteric) can
also modulate toxicity (Fig. 2). Nonionic polymers have very low
water solubility and are generally believed to be of low hazard
concern, unless they contain a significant amount of oligomer or
if the polymer is used as a surfactant or dispersant. Anionic poly-
mers are classified as poly(aromatic acids) or poly(aliphatic acids).
Poly(aromatic sulfonate and carboxylate) polymers have moderate
acute aquatic toxicities with fish, daphnids, and algae (LC50
1–100 mg/L). Poly(aliphatic acids) polymers have low toxicity to
fish and daphnids (LC50 >100 mg/L), whereas algae seem to be
more sensitive presumably due to chelating effects of nutrients.
Due to chelation potential of many of these polymers, the mitiga-
tion potential of hard water further complicates study interpreta-
tion and design. The toxicity of both cationic and amphoteric
polymers has been shown to increase with increasing cationic
charge density [4]. As cationic polymers are believed to pose the
greatest environmental hazard, the need for accurate aquatic acute
toxicity (Q)SAR predictions is the greatest for these compounds.
Other properties that may impact the toxicity of the pure polymer
include physical form, particle size distribution, swellability, disper-
sibility, and of course in addition to these the presence and poten-
tially weight fraction of reactive functional groups.

2.2 Cationic

Polymers

Although cationic polymers are not limited to quaternary ammo-
nium, phosphonium, and sulfonium functional groups, cationic
polymers with quaternary ammonium groups are used in personal
care and household cleaning products as conditioners or softeners
and as flocculants in drinking water treatment plants. Therefore,
there is a potential for the release into the aquatic environment.
Sound environmental risk assessment, with a focus on the aquatic
compartment, is of particular interest for cationic polymers, espe-
cially those with the quaternary ammonium functionality. At the
time of the Boethling and Nabholz publication on polymer risk
assessment, almost all of the cationic polymers reviewed contained a
N-functionality [3].

Fig. 2 Examples of cationic and anionic polymers
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Cationic polymers have a net positive charge at environmental
pH and therefore have the potential to be highly sorptive and
surface active. It has been suggested that cationic polymers will
sorb to biological surfaces which are net negative, and previous
studies have shown that cationic polymers have an impact on respi-
ratory processes and may disrupt oxygen transfer (e.g., gill mem-
branes of fish; Biesinger and Stokes) [8]. Total organic content
(TOC) and dissolved organic carbon (DOC) have been shown to
have a mitigating impact on the aquatic toxicity of cationic poly-
mers, presumably due to sorption, but most of these investigations
have been with highly charged polymers, and less mitigation may be
presumed for lower cationic charged compounds. Traditional tox-
icity studies are conducted in clean media (e.g., standard OECD
test media). The TOC and DOC levels in this media are not
representative of environmental concentrations, and, therefore,
the hazard values derived from these standardized studies may
overestimate the environmental hazard of cationic polymers. Miti-
gation factors, specific to cationic polymers charge density and
LMW composition, have been developed to adjust aquatic toxicity
values to reflect environmental TOC levels. Based on confidential
data from 53 cationic polymers, the USEPA described mitigation
factors ranging from 7 to 290 [2–4]. However, these studies were
conducted in the absence of analytical verification. Experimental
TOC and DOC values may be important parameters to include in
(Q)SAR modeling building exercises. These observations have
resulted in some test conduct considerations as reflected in the
OECD difficult test substance monograph (OECD) [9] and
USEPA [10]. Because cationic polymers interact with anionically
charged substances in general, we have observed toxicity mitigation
as a function of water hardness in our laboratories (P&G, unpub-
lished data). These are important, since toxicity often is linked to
the positively charged polymers [11, 12].

In addition to DOC/TOC levels, other parameters to be con-
sidered in developing (Q)SARs for cationic polymers are physical-
chemical properties that often serve as identity descriptors for the
polymer. The cationic charge is typically found on a nitrogen
group. For this reason, the % amine-nitrogen has been previously
used as a descriptor in aquatic toxicity (Q)SARs. To further elabo-
rate, from the historical work by Boethling and Nabholz [3], the
cationic charge density based on %amine-nitrogen is because almost
all the polymers submitted to the US TSCA office had their cationic
charge based on nitrogen. The polymer backbone may also influ-
ence the toxicity. Cationic polymer backbone types can be carbon-
based, silicon-based (e.g., Si-O), or natural (e.g., starch). The
importance of backbone type and environmental hazard is not
entirely clear. For fish, the toxicity silicon and carbon-based back-
bones are described using unique (Q)SAR equations. Natural poly-
mer backbones are assumed to have equal or slightly less acute
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toxicity than carbon backbone cationic polymers. However, daph-
nids have unique (Q)SAR equations for natural and carbon-based
backbones, with silicon backbones having equal or slightly less
acute toxicity than carbon-based backbones.

Fish and daphnid acute/chronic ratios range from 14 to
18, which suggest a narcotic mode of action [3]. The toxicity
ranged from 0.006 mg/L towards algae for a carbon-based back-
bone polymer with a 7.8% amine-nitrogen charge density quater-
nary amine and 38% MW <500 to more than 1000 mg/L for a
natural-based backbone with 0.07% amine-nitrogen charge density
quaternary amine and 0% MW <500) [3].
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Fig. 3 Acute fish toxicity of quaternary amine cationic polymers (carbon-based backbone) as a function of (a)
charge density (% amine-nitrogen) and (b) average molecular weight. Data obtained from Boethling and
Nabholz (1996) [3]
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It has been suggested by Boethling and Nabholz [3] that the
aquatic toxicity of cationic polymers is influenced by charge density,
molecular weight, and position of cation relative to the backbone.
Figure 3 depicts the relationship between acute fish toxicity and
(a) charge density (percent amine-nitrogen) or (b) average molec-
ular weight in carbon-based backbone quaternary cationic poly-
mers [3]. These plots hint towards increasing charge density
leading to an increase in toxicity, whereas an increasing molecular
weight corresponds with a decrease in toxicity—however much
work is needed to develop reliable (Q)SARs.

In recognition of the impact of charge density of the environ-
mental toxicity of cationic polymers, several regulatory agencies
(e.g., Canada) have established a functional group equivalent
weight (FGEW) cutoff of 5000 for the criteria of polymer of low
concern (PLC). This concept has also been supported by the
OECD review in 2009 of PLC criteria around the world. The
FGEW cutoff concept can be a valuable tool in the prioritization
of polymers to be selected for detailed regulatory reviews (e.g.,
REACH registration in EU).

2.3 Polyquaternium

Cationic Polymers: A

Complex Cationic

Polymer Category

There is very limited data available on a specific class of polyqua-
ternium that supports the observation that measured aquatic toxic-
ity is influenced by charge density.

Polyquaternium cationic polymers represent a class of particu-
lar interest of cationic polymers due to their widespread use and
releases to the aquatic environment. Polyquaterniums represent a
very wide diversity of structures, and as of early 2019, there were
approximately 40 registered active varieties with the Chemical
Abstracts Service. Polyquaterniums are available as homopolymers
or copolymers, and most are water soluble. Homopolymers vary in
MW typically from <100,000 to 500,000 Daltons. All polyquater-
nium polymers contain a monomer with a quaternary ammonium
functional group, such as diallyldimethylammonium chloride or
trimethylammonium chloride. There is a diversity in monomer
chemistries used as the copolymer for the quaternary ammonium
monomer. A few examples of nonionic or anionic copolymers
include vinylpyrrolidone, acrylic acid, polyvinyl alcohol, and acryl-
amide. Within each class of polyquaternium, the molecular weight
will vary depending on the number of repeat units. While charge
density remains constant for homopolymer polyquaterniums, the
range in charge density or degree of substitution is dependent on
the ratio of the monomers for copolymer polyquaterniums. The
selection of monomers and fine-tuning of monomer ratios are
necessary to give a range of physical-chemical properties and prod-
uct benefits for diverse applications.
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Polyquaternium-10 (PQ10) is a cationic cellulose polymer with
quaternary ammonium functionality, varying in charge density and
MW (Fig. 4). The diversity in charge density is driven by the ratio of
the monomer groups. A representative structure is illustrated in
Fig. 4.

Table 1 below provides the measured and published aquatic
toxicity of PQ10; the newest data is from 1991.

Fig. 4 Representative structure of polyquaternium-10

Table 1
Polyquaternium-10 aquatic effects data

Variant

Charge
density [13]
(meq/g) %N2

Avg MWa

[14] (kDa)

Viscosity
(as 2%
aq sol’n)
(mPa/s)2

96 h acute
fish EC50
(Gambusia
holbrooki)
[15] (mg/L)

72 h ECx
algae
(Chlorella
sp12) [17]
(mg/L)

UCARE JR125 High (0.9) 1.5–2.2 Low (250) 75–125 1.2 EC50 ¼ 0.04

UCARE JR30M High (1.0) 1.5–2.2 High (600) 30,000 1.5 EC10 ¼ 0.002
EC50 ¼ 0.05

UCARE JR400 High (1.2) 1.5–2.2 Low (400) 300–500 2.1 EC10 ¼ 0.013
EC50 ¼ 0.05

UCARE LK Low (0.3) 0.4–0.6 Low (~400)b 300–500 100 Not available

UCARE LR30M Low (0.4) 0.8–1.1 High (600) 30,000 66 Not available

UCARE LR400 Low (0.6) 0.8–1.1 Low (~400)b 300–500 64 Not available

aSupplier information
bEstimated based on viscosity information [13–17]
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Based on the limited data available on aquatic effects, it could
be proposed that charge density within a polymer class influences
aquatic effects on fish and algae, while MW does not appear to have
an impact. More information, from a well-structured toxicity inves-
tigation program, would be useful to determine the viability of the
hypothesis. This observed trend supports the rationale to develop
(Q)SAR to estimate aquatic effects when applicable. Since there is
very limited publicly available data, it is not well understood
whether a (Q)SAR developed for one polymer subclass could be
leveraged by another subclass with some common structural
features.

In a more recent example of research to understand whether
physical properties of polymers can be used to estimate aquatic
toxicity, Pereira et al. evaluated molecular weight, charge density,
and integrative intrinsic viscosity of several cationic polyacrylamides
to determine whether these structural features and variables could
be used to predict the environmental effects [18]. The studied
polyacrylamides were copolymers of acrylamide and acryloylox-
yethyltrimethyl ammonium chloride with a cationic monomer con-
tent between 40 and 50% (w/w). The test species included in this
study were bacteria, microalgae, macrophytes, and daphnids. While
correlations were found between physical properties of the cationic
polyacrylamides, the authors concluded that no clear ecotoxicity
patterns correlating to physical properties were observed. While the
observations may be valid for this particular group of polymers, the
historical data from Boethling and Nabholz and Cumming et al.
suggest there is a general relationship between certain structural
features, such as charge density, and observed aquatic toxicity for
cationic polymers, and in fact, (Q)SARs have been used for decades
to estimate toxicity of cationic polymers by the USEPA [3, 15].

It is clear from the above that there is a strong need to explore
(Q)SAR methodologies to describe the toxicity of polymers and
cationic polymers in particular. The regulatory development of (Q)
SARs for polymers has been advanced very little for the past dec-
ades, and publication of environmental toxicity data has also been
sparse in that period. We will therefore in Subheading 3 section
briefly describe possible options that may be applied in future
elucidation of environmental toxicity (Q)SAR methods for
polymers.

3 (Q)SAR Methods

Developing (Q)SARs based on curated PQ data is challenging as
the data availability, transparency, and quality for the training set are
limited and insufficient polymer descriptor information is available.
The same is the case in a greater degree for cationic polymers in
general [19]. And (Q)SARs are of course even more challenging for
polymers in general based as they are much more diverse and data
poor. Below is an outline of methods and approaches to consider.
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3.1 Chemometric

Tools

in Ecotoxicological

Evaluation of Polymers

In the recent decade, we have seen a notable rise in the use of
alternative strategies in testing methods, including computational
tools, for safety assessment of various organic/inorganic chemicals
[20–22]. The in silico tools have demonstrated their successful
application in detecting hazard potential of various chemicals
belonging to several subclasses such as pharmaceuticals [23], agro-
chemicals, nanoparticles, and personal care products [23–27]. For
emerging pollutants such as micro- and nano-sized particles [28]
and polymers, such models are available to much a lower extent.
There is a clear-cut deficit in the number of reports on application
of in silico tools in toxicity (especially ecotoxicity) assessment of
polymeric materials. The data scarcity on polymer ecotoxicity
whether in silico or in vitro is evident mainly from availability of
very few published studies in the literature. One possible reason is
the high degree of proprietary nature for polymers and concerns
with protecting confidential business information by disclosing
identity descriptors for polymers in the public domain. While
there are methods available that can estimate the effects of individ-
ual parent monomers [29, 30], the polymeric versions of the com-
pounds are often left unevaluated (due to highly extensive
computational requirement). Quantitative structure-activity/
property relationship ((Q)SAR/QSPR) and quantitative read-
across analysis (QRA) are widely accepted computational techni-
ques, which are believed to be the most successful [2] two
approaches that can be successfully implemented in identification
of potent environmental pollutants among polymeric compounds
(specifically, cationic polymers in view of their insufficient experi-
mental data) using a very small amount of experimental results. It is
also worth mentioning here that regardless of how statistically
robust or significant a (Q)SAR/read-across model may be, it
would be unavoidably associated with certain limitations
[6]. These limitations are model specific, such as that a single (Q)
SAR model may have its limited applicability owing to its restricted
chemical domain which can be tackled by using intelligent consen-
sus (Q)SAR approaches as proposed by Roy et al. [31]. Another
major challenge in predictive toxicology is to effectively evaluate
the reliability of obtained predictions of unknown/untested or not
even synthesized chemicals. This limitation was also addressed
recently with the introduction of prediction reliability indicator
tool as proposed by Roy et al. [32]. Several commercially available
tools for prediction of different endpoints for chemicals in general
include TOPKAT software [33], CAESAR [34], ECOSAR [2],
Toxicity Estimation Software Tool, etc.; however these tools gen-
erally do not include polymers in their training set which could be
considered an important limitation [35]; hence we explore in the
following sections alternative approaches.
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It is well known that the most robust environmental toxicity
tests are accompanied by confirmatory analytical verification of
exposure. Analytical exposure determinations in aquatic toxicity
tests are formally required, whenever feasible, under all typical
OECD test guidelines for acute and chronic aquatic toxicity. How-
ever, limitations are also known for confirmation of exposures when
polymers are tested. Indirect determinations can be useful in lim-
ited circumstances. These may include total organic carbon (sensi-
tive down to perhaps 2 mg/L) or other alternatives such as
measurement of an inorganic component such as silicon as was
done in the 1990s during the programs addressing environmental
safety of polydimethylsiloxane (PDMS) polymers [36]. (Q)SAR
developments may be somewhat hampered by the lack of specific
analytical verification of exposures until “high-end” analytical
methods can be made routine and broadly available.

3.2 (Q)SAR

Methodologies: Broad

Classifications

The toxicity of whole polymeric structures or the structures in a
monomeric form can be analyzed using (Q)SAR/QSPR methods,
which can be classified as follows:

Regression-Based (Q)SAR This technique can be implemented to
explore the quantitative correlation between toxicity of polymeric
materials with the corresponding structural features. Multiple linear
regression, partial least squares, and artificial neural networks are
some of the examples of regression-based approaches. The use of
regression approach for polymers is demonstrated in [37].
Classification-Based (Q)SAR For graded responses or where
there is a lack of absolute quantitative toxicity data of polymers,
classification-based techniques can be used to group the data into
Boolean classes such as toxic, nontoxic, or moderately toxic classes.
A classification-based technique like linear discriminant analysis
(LDA) is also helpful in big data analysis [38].

3.3 Protocols for (Q)

SAR Analysis

in Polymers

(Q)SAR follows well-established protocols for developing statisti-
cally acceptable models for prediction of activity/property/toxicity
chemical compounds [38, 39]. The Organization for Economic
Cooperation and Development (OECD) has recommended five
basic principles for (Q)SAR model development: (1) a defined
endpoint, (2) an unambiguous algorithm, (3) a defined domain
of applicability, (4) strict validation protocols, and (5) mechanistic
interpretation, if possible [26]. The details of any (Q)SAR work-
flow are discussed below.

Collection of reported/generated biological data: For a (Q)
SAR study involving polymeric compounds, the data collection
should follow the prescribed guidelines of OECD [38, 39] which
include uniform experimental conditions, uniform time of expo-
sure for the desired effect, experiment with a standard species,
analytical verification of the exposure concentrations, etc. The
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data curation should be done effectively to check for duplicates/
salts/ions, etc. Another important point in collecting homogenous
ecotoxicity data for polymers includes ideality in experimental water
conditions such as hardness, alkalinity organic carbon content
(TOC and DOC), etc. that may affect the observed toxicity. In
the case of algal testing and (Q)SARs, definition of specific anionic
and cation components of media may also be important.

Descriptor calculation: For the descriptor calculation, in most
of the cases, initially the monomeric or repeating unit is identified.
The flanks of monomers are capped with hydrogen atom in order to
satisfy the valence electron. Then the structure are subjected to
descriptor calculating software such as Dragon [40], SiRMS [41],
alvadesc [42], PaDEL-Descriptor [43], etc. to calculate molecular
descriptors.

Division of the dataset: In order to obtain useful models, the
collected data should be partitioned into training and test sets
following unbiased methods. Some of the widely followed dataset
division techniques include Kennard-Stone [44], Euclidean dis-
tance approach [45], k-medoids approach [46], and random sam-
pling. These tools for dataset division are available, for example, at
http://teqip.jdvu.ac.in/(Q)SAR_Tools/.

Feature selection: In feature selection, molecular descriptors
important for the response values are identified. Some of the fea-
ture selection techniques include stepwise selection, genetic algo-
rithm, double cross validation (DCV), and factor analysis [47]. The
problems of small datasets (as in the case of polymer toxicity data,
which is scarce) can be addressed to some extent using DCV. In
DCV, the training set is split into calibration and validation sets,
and these are utilized for model building andmodel selection, while
the test set is exclusively used for model assessment. This process
obviates the possibility of bias in descriptor selection. For ideal (Q)
SAR models, the intercorrelation among the descriptors should be
very less.

Modeling algorithms and chemometric tools used in (Q)SAR:
The most commonly employed linear modeling algorithms include
multiple linear regression (MLR) [48], univariate linear regression
(ULR), ordinary least squares (OLS), partial least squares (PLS),
principal component analysis (PCA) [27], principal component
regression (PCR), etc.

Model validation metrics and mechanistic interpretation:
Finally the developed model should be validated following interna-
tionally recognized guidelines. Some widely used validation metrics
for regression models include leave-one-out (LOO) cross-
validation R2 (Q2) and for training set evaluation and QF1

2, QF2
2,

QF3
2, and concordance correlation coefficient (CCC) for test set

evaluation. Some other stringent criteria for model validation
include (1) mean absolute error (MAE) criteria proposed by Roy
et al. [49] and (2) Golbraikh and Tropsha criteria for model
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validation [46]. A mechanistic interpretation of a developed model
is desired wherever possible. Figure 5 depicts the general outline of
polymer toxicity modeling.

4 Applications of (Q)SAR to Polymers: A Literature Review—Applications of (Q)SAR
in Ecotoxicity of Polymers

With the proprietary nature for many polymers, manufacturers and
downstream formulators have generated aquatic effects data for
stewardship reasons, but much of this data is privately held to
protect confidential business information (CBI). However, there
are some classes of polymers that have been studied with publicly
available publications demonstrating potential toxicity of polymers
with some aquatic species [19]. Several examples are presented
below as case studies of (Q)SAR development for diverse polymer
classes.

Acute algal toxicity: The very first and comprehensive (Q)SAR
study on toxicity of polymers was conducted by Nolte et al.
[19]. The data (N ¼ 43) for growth rate inhibition (EC50) of
algae were collected from the literature using Google Scholar and
Web of Science. However, since the data was limited, the authors
combined the data for two different times of exposure, i.e., 96-h
and 72-h reflective of primarily USEPA and OECD algal test
procedures, respectively. Three different models based on their
charge separation (cationic (N ¼ 9), anionic (N ¼ 16), and

Selection of ecotoxicity data of polymers against standard species like algae, crustaceans and fish etc.
(OECD priniciple 1)

Data curation
(Identify and rectify errors present in chemical and biological data)

Dataset division
(Training set ~ 75% and test set~25%)

Mechanistic interpretation

Applicability domain
assessment

Model Validation
(Internal and external validation)

Model Development
(GA/DCV / Stepwise   PLS)

Can be used in regulatory decisions PolyDADMAC (PQ6)
(PolydiallyIdimenthylammonium chloride)
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Chemical structure preparation OECD principle 2
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Fig. 5 Process involved in ecotoxicity study of polymers following in silico (Q)SAR and QRA approach
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nonionic (N ¼ 17) compounds) were developed using one theo-
retical descriptor following regression-based decision tree tech-
nique. More complex branched polymers, polymeric surfactants,
and non-nitrogen cationic polymers were omitted from the study.
The models predict that cellular adsorption, disruption of the cell
wall, and photosynthesis could be the possible mechanisms of
action for algal toxicity of cationic and nonionic polymers. The
findings of the (Q)SAR results combined with molecular dynamics
simulations proposed that nutrient depletion is likely the dominant
mode of toxicity. (Q)SAR relationships for green algae growth
inhibition, however with the low number of data for the generated
(Q)SAR, were not statistically robust and do not comply with the
quality criteria cited by Cherkasov et al. [6, 19].

4.1 Application of (Q)

SAR in Toxicity

Prediction of Polymers

(Peptides)

Antimicrobial peptide toxicity: Langham and colleagues [51]
developed (Q)SAR models to quantify and predict antimicrobial
peptide toxicity against human host cells (epithelial and red blood
cells) based on physicochemical properties like interaction energies
and radius of gyration which were in turn calculated frommolecular
dynamics simulations of the peptides in aqueous solvent. For model
the development 60 peptides with experimentally determined toxi-
cities were used. Langham and colleagues [51] proposed based on
the findings of molecular modeling study that physicochemical
properties of peptides and interactions in a solvent are responsible
for their toxicity against human cells in their native state. The
developed models were then employed in predicting several other
protegrin-like peptides. The (Q)SAR model could correctly rank
four out of five protegrin analogues newly synthesized and tested
for toxicity in laboratory.

Although quantitative structure-toxicity relationship modeling
reports involving polymers are scarce, there are several reports on
(Q)SAR/QSPR modeling of their biological activity and property
endpoints. We report here some of them to demonstrate that
similar tools may be applied to develop models to predict toxicity
of polymers.

4.2 Application of (Q)

SAR to Biomedical

Applications

of Polymers

Cellular response and protein absorption: Khan and Roy [52]
developed predictive (Q)SAR models for a cellular response (fetal
rate lung fibroblast proliferation) and protein adsorption (fibrino-
gen adsorption (FA)) on the surface of tyrosine-derived polymers
designed for the purpose of tissue engineering. These polymers
were synthesized using a combinatorial approach which in turn is
a decade long process used in tissue engineering applications; the
process is briefed in the source paper [52]. The model consists of
66 data for cellular response and 40 data for protein adsorption on
polymers. The models were developed using only selected 2D
descriptors having definite physicochemical meaning. To enhance
the biological domain of the model, multiple (Q)SAR models were
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developed and then subjected to consensus modeling as proposed
by Roy et al. [31]. The final consensus models were validated using
strict OECD guidelines and accepted internal and external metrics.

Cellular response: Semiempirical QSPR models were devel-
oped to predict the cellular response to the surfaces of polymers
designed for tissue engineering applications by Kholodovych and
colleagues [53]. The findings of the models were then compared
with experimental results which showed a high degree of accuracy
proving its significance for biomedical applications. Partial least
squares (PLS) regression technique was used for model develop-
ment using 62 polyarylates and structure-based molecular
descriptors.

Bioresponse modeling: Artificial neural networks (ANN) were
applied to model bioresponse to the surfaces of polymers collected
from combinatorial library [54]. For analysis, 22 structurally dis-
tinct polymers were modeled against human fibrinogen adsorption.
Additionally, the developed models were used to model rat lung
fibroblast and normal human fetal foreskin fibroblast proliferation
in the presence of 24 and 44 different polymers. The root mean
square was used for the error comparison with experimental
finding, and it was lower than experimental results thus proving
applicability of the developed models.

Protein adsorption: Smith et al. [55] proposed a surrogate
model for the prediction of protein adsorption onto the surfaces
of polymers designed for tissue engineering applications. The pro-
posed surrogate model combines machine learning, molecular
modeling, and an artificial neural network. The experimental errors
were estimated using Monte Carlo technique. The dataset consists
of 45 polymers with measurements of human fibrinogen adsorp-
tion. A total of 106 molecular descriptors were computed using the
Molecular Operating Environment (MOE) software. The surro-
gate model was developed in two stages: firstly the three descriptors
with highest correlation to the adsorption were identified, and then
these three descriptors were used as input for the second stage, i.e.,
for artificial neural network (ANN) to predict fibrinogen adsorp-
tion. Here, a Monte Carlo approach enabled a direct assessment of
the effect of the experimental uncertainty on the results. Only the
training set (nearly 50%) was employed for ANN using random
sampling followed by checking of experimental error using Monte
Carlo analysis. The accuracy of ANN was then compared with
experimental data for the remaining polymers (the validation set).
The Pearson correlation coefficient was used as validationmetric. In
conclusion, the surrogate model was proposed to get accurate and
unambiguous predictions of polymers to check for their range of
fibrinogen absorption, an essential requirement for assessing poly-
mers for regenerative tissue applications.
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4.3 Applications

of (Q)SAR in Property

Estimation of Polymers

In other areas of (Q)SAR development, there are a number of
publications that demonstrate that quantitative structure-property
relationship (QSPR) models can be developed to predict certain
physical properties of polymers. Though a number of studies in the
available literature exist on modeling of various properties of poly-
mers, we have reported here a few of the recent reports.

Refractive Index Khan et al. [56] proposed robust QSPR models
to predict refractive indices (RIs) of a set of 221 diverse organic
polymers employing simple 2D descriptors generated by using
monomeric unit. The final model consists of six theoretical descrip-
tors developed using partial least squares (PLS) regression tech-
nique. For feature selection, double cross-validation tool was used.
Use of consensus modeling for predictions frommultiple modeling
was also demonstrated. Finally, four small virtual libraries were
selected to predict their RIs values using obtained consensus
model.

Glass Transition Temperature The glass transition property of
206 diverse polymers was studied by Khan and Roy [37] using the
QSPR approach since it has a direct impact on polymer stability.
Five individual QSPRmodels were obtained using six 2Dmolecular
descriptors following partial least squares regression and DCV as
the feature selection tool. The models were extensively validated,
and Y-randomization (Y-scrambling) test was performed in order
to prove nonrandom and robust nature of the developed models.
At last, comparison with existing QSPR models was made to dem-
onstrate the effectiveness of the novel models.

5 Discussion of Future Avenues: Application of Fragment-Based (Q)SAR
and Read-Across in Ecotoxicity Predictions of Polymers

The area of (Q)SAR modeling for the evaluation of toxicity of
polymers has remained largely unexplored, which could be used
to motivate and inspire (Q)SAR modelers to contribute to this
dynamic and vastly underdeveloped field. A major notable point
here is many of the previous modeling studies [57, 58] on polymers
involve computation of quantum-chemical descriptors which can
be a time-consuming process. This problem can be solved effec-
tively by using only 2D descriptors having simple more definite
physicochemical meaning in order to avoid conformational analy-
sis, computational complexity of energy minimization, and align-
ment problems.

Apart from the classical methods of (Q)SAR model develop-
ment, one can also apply more novel and more appropriate meth-
ods as discussed below.

Fragment-based (Q)SAR: These use molecular substructures
expressed in fingerprints as descriptors in the developed models.
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Fragment (Q)SARs can be implemented in the ecotoxicological
modeling of polymers when studying a part of a molecule or specific
group in relation with the toxicity. A widely used group-based (Q)
SAR is H(Q)SAR (Hologram-(Q)SAR) [38, 39].

H(Q)SAR: This is a modern 2D FB-(Q)SAR (fragment-based)
technique which utilizes molecular substructures expressed in
binary pattern also termed as fingerprints in model development
as variables. The method does not involve calculation of any physi-
cochemical chemical descriptor or 3D structure generation. The
process follows three steps:

1. Fragment generation for each of the training set molecules

2. Representation of the fragments in the holograms

3. Finding correlation of the molecular holograms with the
corresponding activity data using training set compounds
employing the PLS technique

A number of parameters affect H(Q)SAR model generation
such as hologram length, fragment size, and distinction [38]. H
(Q)SAR encodes all possible fragments within the molecules along
with sub-fragments; thus it is helpful in understanding the frag-
ments responsible for the toxicity of polymers in reference species.
The other possible applications of H(Q)SAR in ecotoxicity of
polymers include exploring individual atomic contributions to the
toxicity with a visual display of active centers in the compounds.

Read-across: The read-across approach is a practice based on
the assumption that structurally similar compounds exhibit similar
physicochemical, environmental fate, toxicological, and ecotoxico-
logical properties. The process starts with the grouping of similar
objects (here, structures), and then the response value of one or
more chemicals can be used to predict the behavior of target
chemicals. Four different strategies for read-across have been pro-
posed so far, i.e., one-to-one, one-to-many, many-to-one, and
many-to-many. As per the OECD guidelines [58], the QRA pre-
diction can be performed in following one of the four ways:

1. Using similar chemicals for the endpoint to perform read-
across

2. Using a mathematical scale to check the trend in experimental
results using two or more similar chemicals (e.g., trend
analysis)

3. Taking an average of endpoint values of two or more source
chemicals

4. If sufficient data is available, using the most conservative value
from the source chemicals in the whole category

A read-across strategy can be used to estimate the toxicity for a
series of cationic or anionic polymers with acceptable levels of

700 Hans Sanderson et al.



uncertainty. Considering that the toxicity data are available for a
limited number of polymers, read-across will be very helpful for
bridging data gaps. However, efforts are needed to define how
similar polymers should be grouped and what key physical-chemical
properties should be used in the grouping scheme. Data anchors at
the extremes of the biological attribute being used to develop the
read-across are important to define. Previous groupings by ECHA
or EPA may be too broad, and further work is needed to refine
based on the diversity of polymers within classes or subclasses. In
addition, it is possible that the grouping and read-across approach
may need to be customized depending on polymer class or even
route of exposure. The potential impact of polymers to human
health and the environment may be estimated through developing
(Q)SAR models and by enabling read-across to structural analo-
gues and avoiding or minimizing the need to conduct safety stud-
ies. This would bring benefits to time, resources, and avoiding
animal testing. (Q)SARs could also be leveraged in polymer inno-
vation and providing guidance on the design space.

6 Conclusions

It is clear from the above that regulatory programs are increasingly
starting to include polymers for environmental risk assessment,
chiefly in REACH, and that there has been a paucity for a couple
of decades in the development of aquatic toxicity (Q)SARs by the
USEPA [4] for polymers. There is hence a need to develop models
for this purpose. It is also clear that polymers are very diverse and
this diversity needs to be reflected in the model development and
domains [6]. It is also clear that key and necessary data that are
needed to do assessments or generate regression-based (Q)SARs
are currently largely missing [19] and the sparse available experi-
mental data lacks insight on experimental exposure. Moreover,
regression-based (Q)SARs still require identification of the most
determinant toxicity descriptors of the polymer. It is highly ques-
tionable if this is hydrophobicity since the mechanism of action is
either unknown or not narcotic since the molecules are too large to
exert the narcotic mechanism we normally associate with narcosis.
Cationic polymers are highlighted as an example in this chapter of a
class of polymers of high and down-the-drain use, more specifically
polyquaterniums. The toxicity of these materials is dependent upon
charge density, molecular weight, %amine-nitrogen, solubility, and
type of backbone. There may be other additional and currently
uninvestigated descriptors that govern the toxicity of these and
other cationic polymers. We have suggested a series of non-
regression-based (Q)SAR approaches that may be applied to eluci-
date the potential descriptors. Figure 5 outlines a process for devel-
oping (Q)SARs which when combined with the learnings from
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Cherkasov et al. [6] are important methods moving forward. Using
polymer properties may be useful for estimating fate, effects, and
even form in the environment. For example, the glass transition
temperature (Tg) [37] may be used to estimate form. If a polymer is
below Tg, then it has to be a solid. If it is above Tg, then it could be
a solid or liquid depending on the melting temperature of the
polymer, which would determine the bioavailability and toxicolog-
ical availability of the material. 3D comparative molecular field
analysis and other ANN or 2D H(Q)SAR may prove highly rele-
vant—but in a regulatory setting, the models have to be transparent
in which case the fragment-based models may initially be used to
identify critical toxicity and availability descriptors which can then
be used to cluster the polymers. The toxicity of these clusters can
then be experimentally explored and recorded and subsequently
develop read-across within these. The authors of this chapter are
pursuing this in the coming years via generation of novel experi-
mental and computational data on polyquaterniums, and we will
also evaluate the potential for fragment-based (Q)SARs for poly-
mers in REACH.
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