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HIGHLIGHTS GRAPHICAL ABSTRACT

* Microplastics (MPs) increased activities of
N and P hydrolases in paddy soil.

*« MP amount increased nutrient acquisition
ratio and total enzyme activity.

* MPs lead to soil nutrient decreased
through microbial action.

* MPs impact nutrient availability and agri-
cultural ecosystem functions.
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Microplastics provide a new ecological niche for microorganisms, and the accumulation levels of
microplastics (MPs) in terrestrial ecosystems are higher than those in marine ecosystems. Here, we
applied the zymography to investigate how MPs — polyethylene [PE], and polyvinyl chloride [PVC])
at two levels (0.01% and 1% soil weight) impacted the spatial distribution of soil hydrolases, nutrient
availability, and rice growth in paddy soil. MPs increased the above-ground biomass by
13.0%—-15.5% and decreased the below-ground biomass by 8.0%—15.1%. Addition of 0.01% and
1% MPs reduced soil NH,* content by 18.3%—63.2% and 52.2%-80.2%, respectively. The average
activities of N- and P-hydrolases increased by 0.8%—4.8% and 1.9%—6.3% with addition of MPs,
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respectively. The nutrient uptake by rice plants and the enzyme activities in hotspots increased with
MP content in soil. The accumulation of MPs in paddy soil could provide an ecological niche that
facilitates microbial survival, alters the spatial distribution of soil hydrolases, and decreases nutrient

availability.
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1 Introduction

The detrimental impact of microplastics (MPs) in marine
ecosystems is well known (Cauwenberghe et al., 2014;
Shivika et al., 2017), and the threats posed by them to
terrestrial ecosystems are raising concerns (Liu et al., 2018;
Ng et al., 2018; Rong et al., 2021). These concerns are
supported by estimates that the accumulation of MPs in terr-
estrial ecosystems is far greater than that in the ocean (Luca
et al., 2016; Horton et al., 2017; Alimi et al., 2018). In agroe-
cosystems, compost, sludge, irrigation, and agro-plastics
are the main pathways of MP input to farmland (Nizzetto
et al., 2016; Steinmetz et al., 2016; Weithmann et al., 2018;
Okoffo et al., 2021). For instance, plastic films are widely
used on the soil surface of agricultural crops to improve pro-
ductivity, with studies detecting a 2-fold increase in plastic
fragments in soils with plastic mulching compared to soils
without it (Zhou et al., 2020). Plastic film mulching practice is
not commonly used in rice paddy soil. However, in paddy
fields in water-stressed areas, the plastic film has been wid-
ely used to reduce water evaporation and to maintain grain
yields (Qu et al., 2012; Liu et al., 2013; Yao et al., 2014). Lv
et al. (2019) revealed that there are 12.1 £ 2.5 and 27.6 +
5.9 items kg™' of microplastics during non-rice and rice-
planting periods in a rice-fish co-culture system, respect-
ively. The polyethylene (PE) film and fiber, polypropylene
(PP) fiber, and polyvinyl chloride (PVC) granules, which
originate from the applications of plastic products, such as
organic fertilizer and commercial fish diets, are the main
sources for MP contamination into the rice-fish culture
environment (Lv et al., 2019).

Polyethylene (PE) and polyvinyl chloride (PVC) are the
most abundant types of MPs used in farmland ecosystems
(Li etal, 2011; Zhao et al., 2017; Yang et al., 2015). Inve-
stigations of the impact of MPs on soil physical properties,
the microbial community, and the plant nutrient ratio have mus-
hroomed in farmland ecosystems in the last few years (Liu
etal., 2017; Huang et al., 2019; Shin et al., 2021). However,
few studies have linked the effects of MPs with soil nutrients
and soil enzyme properties in farmland ecosystems. Micro-
bes of specific communities (Feng et al., 2020; Tender et al.,
2017) are inclined to attach to the surface of microplastics,
which thus provide a new niche (Zettler et al., 2013). For
instance, several fungi species with the potential to degrade
PE have been found in soil contaminated by MPs (Sangale
etal., 2019). In addition, Xie et al. (2021) reported that PE
and PVC showed signs of biodegradation after three months
of soil incubation. Fei et al. (2020) reported that MPs (PE
and PVC) present in acidic soil stimulate phosphatase

activity. This is because microplastics increase the soil
water holding capacity (De Souza Machado et al., 2018),
which is positively correlated with soil acid phosphatase
activity (Sardans and Pefiuelas, 2005). The addition of 0.1%
and 1% PVC MPs to paddy soil reduced soil available P
content (Yan et al., 2020). Extracellular enzymes excreted
by microbes provide an important medium for the cycling of
soil nutrients (Schimel, 2003; Kujur et al., 2014; Cuietal.,
2019). For instance, microorganisms accommodate nutrient
uptake by allocating resources for C-, N-, and P-hydrolase
secretion to achieve optimal growth (Allison et al., 2010).
Soil hydrolase activity has been extensively measured for
BG (B-glucosidase), XYL (xylanase), NAG (chitinase), and
ACP (phosphatase), all of which are important for nutrient
re-hydrolysis and maintaining soil fertility in paddy fields
(Burns et al., 2013). Small changes to plant soil systems
caused by MP addition might cause a series of impacts on
ecosystem services over the long-term (Zang et al., 2020;
Zhou et al., 2021). Therefore, it is important to explore how
MPs affect soil hydrolases and soil nutrients.

Due to the characteristics of soil heterogeneity, conven-
tional techniques used to analyze soil enzymes cannot
provide accurate extracellular information (Wei et al., 2019a;
Andrey et al., 2021). Soil in situ enzyme spectroscopy is an
emerging method for studying the nutrient acquisition stra-
tegies of plant roots and rhizosphere microorganisms (Spohn
et al., 2013). The fluorescence-labeled substrate reacts com-
pletely with extracellular enzymes at the soil-micro interface,
and the released fluorescence-groups are retained in situ
and can emit visible light at about 460 nm under excitation
light of 355 nm (Vepsalainen et al., 2001). The emitted fluor-
escence intensity shows a good regression relationship with
the amount of fluorescein released, and the fluorescence-
group participating in the enzymatic reaction is equal to the
amount of the degraded fluorescent substrate. The intensity
and distribution of the emitted light can be captured by a
camera. A high resolution of in situ quantitative detection of
enzyme activity can be realized. MPs serve as new subs-
trates for the colonization and formation of assemblages of
microorganisms, constituting a unique environment called
the “plastisphere”, which increases the heterogeneity of soil
(Zettler et al., 2013; Harrison et al., 2014). Various studies
have indicated that bacterial assemblages with distinct
community structures, especially plastic-degrading bacteria,
colonize PE (Huang et al., 2019). Zhou et al. (2021) repor-
ted that MPs increase the area of soil hotspots, these being
locations where nutrient turnover is significantly faster than
in the soil in general. Such studies have provided valuable
insights into the impact of the “plastisphere” on microbial
communities and nutrient conversion capacity. However, the
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relationship between the expression of soil extracellular enzy-
mes (such as BG, XYL, and ACP) and available nutrients
under MP modification is not well known (Sinsabaugh et al.,
2009; Sinsabaugh et al., 2015).

Here, we aimed to evaluate how MPs affect the spatial
distribution of enzyme activity and rhizosphere properties.
We focused on evaluating the two most common MPs in
soil, and how they impact the activity of hydrolases resp-
onsible for dissolved organic carbon (DOC), NH,*, and
Olsen-P. We hypothesized that 1) MPs would provide more
ecological sites for soil microbes and increase microbial
activity, which would lead to accelerated soil nutrient
consumption by both microbes and plants, and 2) the
introduction of MPs to soil would cause N and P nutrient
limitation, which would promote the extracellular enzyme
secretion of N- and P-related hydrolases. To test these two
hypotheses, the effects of the spatial distribution of C, N,
and P hydrolases and soil nutrient content were determined
based on C, N, and P hydrolase active hotspots in solil
modified by MPs. Our results are expected to advance
current understanding of the ecological risk presented by
soil MPs to agricultural plants.

2 Materials and methods

2.1 Sample preparation

Soil samples were taken from the tillage layer (15% water
content) at the Jinjing Agroecosystem Research Station,
Hunan Province, China (28°155'N, 111°127'E). It has a humid
subtropical monsoon climate with average air temperature of
16-18 °C, annual rainfall of 1200—-1700 mm, and a frost-free
period of 250-300 days. Soil was sifted through a 2 mm
sieve to remove coarse plant residues, air-dried at 30 °C,
and then pre-incubated at 25 °C for two weeks. Soil texture
was of 4.0% clay, 40.4% silt, and 55.6% sand. We grew 30
rice plants, each in a separate rhizo-box with inner
dimensions of 18.4 cmx11.4 cmx4.5 cm, as described by
Ge et al. (2017).

2.2 Plant and soil sampling

Each rhizo-box soil was collected after 35 d of incubation,
and one side of the root box was opened to remove the soil
and plants. The above-ground plants were removed and
allowed to dry, and the underground parts of the roots were
separated from the soil. The soil within a distance of 2 mm
from the roots surface was grouped as rhizosphere soil
(RS), and the rest was grouped as bulk soil (BS). The basic
physical and chemical indexes of soil were determined.
DOC was extracted with K,SO, (0.5 mol L™') and measured
using a total organic carbon analyzer (Shimadzu, Kyoto,
Japan). The same extracted solution was used to determine
soil NH,* using a continuous-flow auto-analyzer (Fiastar
5000; Foss Tecator AB, Hbganas, Sweden). Olsen-P was

extracted using 0.5 mol L=' NaHCO, and measured as des-
cribed by Olsen et al. (1982). The chloroform fumigation extr-
action method was used to measure soil microbial biomass
C (MBC) and microbial biomass N (MBN) (Wu et al., 1990;
Jenkinson et al., 2004). Soil microbial biomass P (MBP) was
determined as described by Brookes et al. (1984).

2.3 Experimental setup and direct soil zymography

The contents of N (CO(NH,),), P (NaH,PO,+2H ,0) and
K (KCI) fertilizers were 100, 20 and 120 mg kg™ dry weight
(dw), respectively, and were used as a base fertilizer. Each
rhizo-box contained 0.8 kg soil, and there were five trea-
tments (control, 0.01%PE, 1%PE, 0.01%PVC, and 1%PVC;
the MP percentage is the percentage dry weight of each
treated soil), with six replicates per treatment. Rice was
cultured for 35 days under a 3 cm submerged condition. The
rhizo-box was covered with foil as described by Wei et al.
(2019b). This experiment was conducted outdoors in
Changsha (113°08924'E, 28°198715'N) in July.

Before measuring the activity of each enzyme assay, their
respective enzyme substrate concentrations were measured
in a pre-experiment. The contents of BG (4-methylumbelli-
feryl-B-D-glucoside), XYL (4-methylumbelliferyl-3-D-xylopy-
ranoside), ACP (4-methylumbelliferyl-phosphate) and NAG
(4-methylumbelliferyl-N-actyl-B-D-glucosaminide) were 1, 2,
4, and 10 mmol L1, respectively, determined after an incu-
bation time of 1, 1.5, 1.5, and 2 h, respectively. After
cultivating rice for 35 d, the spatial distribution of enzyme
activity around the roots was measured by direct soil
zymography. The visualization method of enzyme activity
was the same as that detailed in Ge et al. (2017).

2.4 Image processing and analysis

The zymograms were quantified using Imaged, as described
by Razavi et al. (2016). Using a control group of different
enzymes, the activity of enzymes related to C, N and P hydr-
olysis was greater than 106, 249, and 319 mol cm=2 h™1,
respectively, were defined as hotspots in the current study.
The extension of the rhizosphere was calculated by ex-
amining the enzyme activity distribution as a function of
distance from the root center to the surrounding soil:

a
= _ 1
y=Yo+ ED) (1)

where, a is the increase in enzyme activity from bulk soil to
the rhizosphere; b is the steepness of the rhizosphere
gradient, x, is the rhizosphere key zone extension, y, is the
enzyme activity of bulk soil, and y,+a is the maximum
activity in the rhizosphere.

The average enzyme activity in hotspots (E) was calcu-
lated by fitting the grey values in hotspots to the calibration
line (Fig. 2), and the total enzyme activity in hotspots (TE)
was calculated using Eq. (2)
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TEy = Ey XA X S 2)
where, TE, is the total enzyme activity in hotspots, E,, is the
average enzyme activity in hotspots, A, is the percentage of
hotspot area, and S is the area of the soil surface. The C/P,
C/N, and N/P acquisition ratio in hotspots was calculated
using Eq. (3) (Sinsabaugh et al., 2008):

C/N acquisition ratio =In (BG+XYL)/In (NAG)
C/P acquisition ratio =ln (BG+XYL)/In (ACP)

N/P acquisition ratio = In (NAG)/In (ACP) 3)

where BG, XYL, NAG and ACP indicate the TE,, of B-glucos-
idase, xylanase, N-acetyl-glucosidase and acid phosphatase
activity, respectively.

Differences between treatments with and without MPs
addition, and between rhizosphere and bulk soils were exa-
mined using an analysis of variance. Structural equation
models were used to analyze the effects of MPs on resource
stoichiometry and nutrient acquisition ratio. Statistical ana-
lyses were performed using SPSS 20.0. Least significant
difference multiple comparisons (p < 0.05) tests were used
to assess significant differences among the experimental
treatments. Principal component analysis was used to
determine differences between the MP treatments using R
version 3.4.1.

3 Results

3.1 Effects of microplastics on plant and soil properties

The addition of either PE or PVC affected both rice shoot
and root biomass. Relative to the unamended control soil,
MPs increased shoot biomass by approximately 13.0%—
15.5%. However, MPs reduced the biomass of rice roots by
9.2%, 15.1%, 8.0%, and 11.8% with 0.01% PE, 1% PE,
0.01% PVC, and 1% PVC, respectively (Fig. 1). Unlike the
effect of MPs on rice shoot biomass, the reduction in rice
root biomass was MP dose-dependent.

MP addition also reduced soil DOC content by 6.0%—
17.7% and 11.0%-19.0% in RS and BS, respectively. In
general, the Olsen-P content was higher in BS than in RS
(Fig. S1). The Olsen-P content in RS decreased with
increasing MP level by 1.0%, 4.8%, 11.5%, and 16.8% with
0.01% PE, 1% PE, 0.01% PVC, and 1% PE, respectively
(Fig. S1). MBP content in RS decreased with the increasing
MP levels by 15.6%, 29.0%, 18.8%, and 26.3% with 0.01%
PE, 1% PE, 0.01% PVC, and 1% PE, respectively (Fig. S1).
Compared to the value in the control, the RS NH,* level
significantly decreased by 18.3%, 56.8%, 35.6% and 52.2%
with 0.01% PE, 1% PE, 0.01% PVC, and 1% PE, respe-
ctively, positively correlating with the MP levels (Fig. S1).
The BS NH,* levels followed the same pattern; with the
exception that the decline was greater than that in the RS,
decreasing by 19.0%, 70.0%, 63.2%, and 80.2% with 0.01%
PE, 1% PE, 0.01% PVC, and 1% PE, respectively (Fig. S1).
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Fig. 1 Effects of microplastic (MP) amendment on shoot and root

dry weight of rice and on the root-to-shoot ratio. Values represent
the means and error bars represent standard deviation (+SD, n = 3).
Plant biomass was measured after 35 days of rice growth under
each treatment, Control; 0.01% PE; 1% PE; 0.01% PVC; 1% PVC.

3.2 Effects of microplastics in hotspot areas and spatial dist-
ribution of soil extracellular enzymes

The hotspots of C hydrolyzing enzymes (BG and XYL) were
distributed along the roots, and enzyme activity was stim-
ulated by PE addition, but inhibited by PVC addition (Fig. 2).
Compared to the control, PE increased the average enzyme
activity of BG and XYL in hotspot areas by 5.6%-8.4% and
1.5%—10.7%, respectively (Fig. 3). Phosphorus hotspots
(ACP) were present in both RS and BS, with higher enzyme
activity detected near the roots (Fig. 2). ACP average enz-
yme activity in hotspot areas with both PE- and PVC-MP-
modified soil showed 24%-6.3% and 1.9%—-2.4%
increases, respectively, in comparison with the values in the
control group (Fig.3). NAG activity declined in RS in
comparison with that in BS, particularly at the root surface
(Fig. 2). Compared to the values in the control, the two
levels of PE increased NAG average activity by 0.8%—4.8%
in the hotspot areas (Fig. 3).

The rhizosphere hotspots of BG enzyme activity were
stimulated by PE and inhibited by PVC, with both PE and
PVC showing dose-dependent effects on BG enzyme
activity (Figs. 4, S2). The rhizosphere hotspots of XYL
enzyme activity were stimulated by both PE and PVC.
However, a dose-dependent effect was not observed. There
was no rhizosphere NAG enzyme activity effect. However,
NAG was activated by PE around the root (Fig. 4). After
35 d of growth, BG activity (0.49-0.81 mm) in RS hotspots
in the MP-modified group was lower than that in the control
(0.94 mm). ACP activity increased with the increasing MP
level, with 0.01% PE (0.60 mm) < 1% PE (0.67 mm) and
0.01% PVC (0.48 mm) < 1% PE (0.59 mm) (Fig. 4).

3.3 Effects of microplastics on resource stoichiometry and
nutrient acquisition ratio

The soil C/N ratio (DOC/NH,*) and MBC/MBN ratio (Fig. 5)
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Fig. 2 Zymograms and hotspots of BG, XYL, ACP and NAG in control soil and soil to which PE and PVC were added at two
levels (0.01% and 1% of soil dry weight). The color intensity is proportional to the enzyme activity (nmol cm=2 h='). Each
zymograms is representative of six independent replicates. The numbers in the top left of each panel is the percentage of the

total image area that belonging to a hotspots.
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Fig. 3 The average enzyme activity of BG, XYL, ACP and NAG in
hotspots (E,;, pmol cm=2 h~1) under untreated soil (control) and soil
to which the PE and PVC were added at two content levels (0.01%
and 1%). Values are means (+SD, n = 3) of three replicates.
Different lowercase letters (a, b, c) indicate significantly different
means among the different content of PE and PVC (p < 0.05).

significantly increased with the increasing MP level (p <
0.05), except for the soil MBC/MBN of RS with PVC add-
ition. Compared to the control, PE and PVC reduced soil
available C/N ratio 1.1 to 2.9-fold and 1.3 to 4.5-fold, resp-
ectively. The MBC/MBN ratio after 1% MP addition decre-
ased 1.5- to 1.8-fold (Fig. 5). The C/N acquisition ratio decre-
ased 0.7- and 0.6-fold under 0.01% and 1% PE addition,
respectively (Fig. 6). The soil available N/P ratio (NH,*/
Olsen-P, Fig.5) in RS decreased 1.2- and 2.2-fold with
0.01% and 1% PE addition, respectively, and 1.4- and
1.7-fold with 0.01% and 1% PVC addition, respectively. The
MBN/MBP ratio (Fig.5) increased 1.4-fold with 1% PE
addition in both RS and BS (p < 0.05). Compared to value in
the control, the N/P acquisition ratio of soil with PE addition
increased approximately 1.4- to 1.5-fold, whereas the ratio
decreased 0.7- to 0.9-fold with PVC addition (Fig. 6). The
soil available C/P ratio (DOC/Olsen-P, Fig.5) in BS was
lower than that in RS. The C/P acquisition ratio increased
1.06-, 0.90-, 0.86- and 0.68-fold with 0.01% PE, 1% PE,
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0.01% PVC, and 1% PVC, respectively. Therefore, higher
MP levels (1%) altered the ratio of available soil nutrients
(C/N, C/P, and N/P; p < 0.05). Results of structural equation
models of the effects of MPs showed a reasonable fit to our
hypothesized causal relationships (x2 = 0.066, p= 0.996,
comparative fit index (CFI) = 0.999, root mean square error
of approximation (RMSEA) = 0.000, and Akaike information
criterion (AIC) = 50.066; Fig. 7), which indicated a significant
effect of MPs on the soil nutrient ratio (p<<0.001) (Fig. 7).

4 Discussion

4.1 Effects of microplastics on plant growth and soil
properties

Overall, MPs reduced the growth of roots and promoted the
growth of shoots in paddy soils (Fig. 1). However, Zang et
al. (2020) found that the growth of roots and shoots of wheat
was reduced by the addition of 1% MPs (PE and PVC). This
difference might be attributed to differences in the planting
environment between rice and wheat. Flooding conditions
are more conducive to the flow of nutrients and increased

nutrient uptake by plants (Chen et al., 2014). MPs may cau-
se biogeochemical changes in the soil through the leaching
of components on the surface and often through organic
phosphite antioxidant additives in the bulk soil that are easily
transformed to organic phosphates that may further possibly
break down to phosphate (Machado et al., 2019). Soil pro-
perties were influenced by the type and content of MPs
added; in particular, NH,* levels showed a classic MP dose-
dependent response in our study (Fig. S1). This pheno-
menon might be related to MPs stimulating soil niche
nutrient competition, along with increased N-hydrolyzing
gene expression (Rong et al., 2021).

The effect of microplastics on available N was greater than
that on available C and P (Fig. S1). Microplastics form a
new ecological niche and microbes from some specific
communities are more inclined than other microbes to attach
to microplastic surfaces (Feng et al., 2020; Tender et al.,
2017; Zettler et al., 2013; Sangale et al., 2019). Therefore,
the turnover of native SOM may be stimulated due to the
altered metabolic status of the microbial community (Xiao
etal, 2021; Kuzyakov, 2010; Zang etal., 2017; Lietal,
2020), and thus influence soil C and nutrient cycling. In
ecological enzyme metrology, microorganisms secrete
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Fig. 4 Profiles of enzyme activity as a function of distance from the root center to the surrounding soil. Point values were
obtained by analyzing three roots as replicates (see Fig. 1). The curves (continuous lines) represent the fitting of enzyme activity
as a function of distance from the root tip by non-linear regression (Eq. (1) in Section 2.4). The bar graph at the bottom of each
figure reflects the rhizosphere extensions for each enzyme from the fitted curves. Error bars represent standard deviation (+SD,
n = 3). As chitinase activity lower more in the rhizosphere and at the root surface than in the bulk soil (in contrast to the other
three enzymes). The presented bars reflect the rhizosphere extent of expansion of rhizosphere hydrolase activity. Consequently,
there was no rhizosphere extension for the distribution of enzyme activity of NAG.
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Fig. 5 Ratio of soil available C/P, C/N, N/P, MBC/MBP, MBC/MBN, and MBN/MBP in the rhizosphere and bulk soil in
untreated soil (control) and soil to which PE and PVC were added at two levels (0.01% and 1%). Values are the means (+SD,
n = 3) of three replicates. Lowercase letters (a, b, ¢ and d) indicate that means were significantly different mean for PE and PVC

levels (p < 0.05).

Nutrient acquisition ratio

C/N c/p N/P

Fig. 6 C/N, C/P and N/P acquisition ratio (based on the activity of
enzymes responsible for C, N and P hydrolysis) in untreated soil
(control) and soil to which PE and PVC were added at two levels
(0.01% and 1%) (Egs. (2) and (3) in Section 2.4). Values are means
(xSD, n = 3) of three replicates. Lowercase letters (a, b, c, d, and e)
indicate significantly different means for PE and PVC levels (p <
0.05).

extracellular enzymes to maximize the decomposition of
priority substrates that meet the requirements of restricted
elements (Mooshammer et al., 2014). To maintain the bal-
ance of available P in soil (Richardson et al., 2011), phosph-
atase activity canbe enhancedtoincrease P availability (Allison
et al., 2005; Geisseler et al., 2010). The dynamic equilibrium
of available P is maintained through microbe-mediated sol-
ubilization of inorganic P and the mineralization of organic P
(Nikitha et al., 2017; Qu et al., 2020). Our findings are con-
sistent with these previous findings on phosphatase hotspot
areas (Fig.2). Hence, MPs increase soil geochemical
cycling in specific sites, providing an energy base for
microbes and accelerating the depletion of soil nutrients.
This result confirms our first hypothesis.

4.2 Effects of microplastics on the in situ distribution of soil
enzyme activity

Consistent with our second hypothesis, the percentage of
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Fig. 7 Structural equation models (SEM) illustrating how the two types and levels of microplastics (MPs) impacted the soil’s
available nutrients ratio, nutrient acquisition, soil microbial biomass, and total enzyme activity in hotspot areas. Arrows
represents effect path and direction; orange and green lines represent positive and negative effects, respectively; bold, thin, and
dashed lines indicate highly significant (**), significant (*), and non-significant correlations, respectively. Top left values on the
figure explain the variations by affecting factors; Chi Square (y?) represents the difference between estimated and observed
values; “p” represents the significance level; root mean square error of approximation (RMSEA) represents the difference
between the theoretical model and saturation model; comparative fit index (CFl) represents the degree of improvement of the
model over the nihilistic model; and Akaike information criterion (AIC) metrics were used to assess the complexity of the models.

hydrolytic enzyme activity (ANG and ACP) hotspot area in
soil was greater at higher MP levels than that at lower MP
levels (PE and PVC) (Figs.2, 3). The C hydrolyzing
enzymes (BG and XYL) hotspot area in soil was similar to
ANG and ACP under PE modification (Figs.2, 3).
Consequently, enzymes activity was enhanced in MP-
amended soil. This phenomenon is important because
several biogeochemical transformations affect the fate of
nutrients, such as mineralization or denitrification (Bilyera et
al., 2020; Feietal., 2020; Renetal, 2020; Seeley etal.,
2020). In addition, MPs caused the active hotspot area of N
and P hydrolases to increase by a much larger factor than
that of C hydrolase. For instance, BG and XYL levels
showed a 0.08- to 3.75-fold and 0.03- to 3.59-fold increase,
respectively, whereas ACP and NAG levels showed a
10.48- to 84.76-fold and 1.09- to 39.71-fold increase,
respectively (Fig. S3).

Consistent with the economics of soil extracellular enzyme
secretion, MP input creates a C-rich environment (Rillig
2018; Rilligetal, 2019), in which rhizospheric soil
secretases take precedence over other restrictive factors
(e.g., N and P) (Figs. 2, 7). This dynamic nutrient balance
provides optimal resources to meet the requirements of
microbial elemental stoichiometry (Allison et al., 2010).
Under PVC addition, the area of active soil hotspots of NAG
and ACP did not increase as much as those under PE
addition and even hindered the active hotspots of BG and
XYL, supporting the findings of Zang et al. (2020). This

finding showed that PVC reduced the activity of BG and XYL
average enzymes in hotspot areas at high level MP addition
(Figs. 2, 3). The chlorine atoms in the PVC molecular chain
might act as electron donors for metabolic hydrolyzing
enzymes during component leaching; denitrification requires
electron acceptors (Zou et al., 2009; Miao et al., 2017; Xie et
al., 2021). Machado et al. (2019) obtained similar results,
whereby polyamide-derived N was quickly metabolized by
the microbiome directly on particle surfaces, thus increasing
leaf N content. NAG enzyme concentrations in the root
circumference of PE treatment exceeded those in the root
PVC treatment circumference, supporting the identification
of the significance of this phenomenon (Fig. 4). Thus, MP
addition altered the spatial distribution of soil hydrolase
activity, with the elements of MPs impacting hydrolase
activity.

4.3 Effects of microplastics on the characteristics of
ecological enzyme metrology

Soil microorganisms adjust their elemental balance in res-
ponse to soil disturbances (Mooshammer et al., 2012; Sistla
etal., 2012), exhibiting conservative stoichiometric resp-
onses (Moe et al., 2005; Sinsabaugh et al., 2012). Within
the range of microbial capacity, microorganisms respond to
changes in environmental nutrient resources by altering the
ratio of C, N, and P extracellular hydrolysis enzymes (Allison
et al., 2005).
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There are two main mechanisms by which the non-
homeostatic behavior of microbes reduces the stoichio-
metric imbalance of resources (Mooshammer et al., 2014).
When C and P availability in the environment increases,
microorganisms synthesize lipids, glucans, and polyphosp-
hates, preserving C and P; however, there is no particular
reservoir for storing N in microorganisms. The MBC/MBN
ratio significantly increased when PE levels were high, and
vice versa for MBN/MBP (Fig. 5). This phenomenon might
be mediated by non-homeostatic behavior, which adjusts
the ratio of microbial biomass (MBC/MBN and MBN/MBP) to
maintain the imbalance in soil N and P resources (Moosh-
ammer et al., 2014). Furthermore, the ratio of MBC/MBN
was higher than the microbial community stoichiometric ratio
(C/N = 60:7) (Cleveland et al., 2007), demonstrating a high
utilization rate of soil N (Goran 2010). Alternatively, the non-
homeostatic behavior of microbial biomass can possibly be
attributed to shifts in community composition (Fanin et al.,
2013; Mooshammer et al., 2014); however, shifts in comm-
unity composition were not included in this study and can
present a direction for future research.

Microbes maximize the mobilization of substrates that are
rich in the limiting elements by adjusting extracellular enzy-
me production (Wallenstein et al., 2008; Burns et al., 2013;
Mooshammer et al., 2014). Ecological enzyme stoichiometry
can reflect the biogeochemical balance model involving
microbial metabolism, nutrient acquisition, and nutrient avail-
ability in the environment (Waring et al., 2014; Fanin et al.,
2016; Moorhead et al., 2016). The C/N and C/P acquisition
ratios significantly declined when MP levels were high (p<
0.05) (Fig. 6). The C/P acquisition ratio value was smaller
than one and declined with increasing MP concentration;
however, there was no significant difference in the reduction
of available P concentration when compared to that of the
control group. Thus, in MP-modified soil, microorganisms
may have to mine phosphate from organic matter (Zhang
et al., 2015; Sinsabaugh, et al., 2009). Monoesters and dies-
ters are the form of most organophosphorus compounds,
which are released by phosphatases (Mcgill et al., 1981;
Howarth, 1991). Therefore, MP addition may possibly lead
to P mobilization from inorganic and organic sources. N and
C are essential elements for the secretion of extracellular
enzymes that may further exacerbate elemental limitation
(Schimel et al., 2003). In an N-limited environment, the
excretion of extracellular enzymes to mobilize N-containing
substrates may not be an adequate strategy for microbes to
regulate their N homeostasis (Schimel et al., 2003). This is
possibly an explanation of why the C/N acquisition ratio did
not significantly decline between the modification of PE by
0.01% and 1% modification (Fig. 6). Consequently, microor-
ganisms must meet nutrient resource requirements by
regulating resource utilization efficiency and their own micro-
biomass composition. This phenomenon was confirmed by a
decrease in NH,* and MBN content in our study, which was
significantly negatively relative to the MP levels (Figs. S1, 7).

5 Conclusions

MP contamination of soil differentially affects both the
distribution of hydrolase activity and nutrient uptake by
plants or microorganisms, depending on the level of MP
contamination. Soil N (NAG) and P (ACP) hydrolase hotspot
areas were stimulated by MP input, particularly due to PE
and high levels of PVC. However, soil available N and P
declined because of MP input. Soil NH,* and Olsen-P
content were 50% lower in the high-level MP modification
group than those in the uncontaminated control soil. Com-
pared to the values in the control, MP did not significantly
increase the above-ground plant biomass but reduced the
below-ground biomass. Consequently, MPs alter the spatial
distribution of soil hydrolases and biogeochemical proce-
sses, limiting soil nutrients and retarding plant development,
especially the root system. This study provides new insights
into the short-term effects of common MPs regarding
hydrolase distribution in paddy soils. However, the long-term
effects of MPs on plant-soil-microbial interactions must be
examined to obtain a holistic evaluation of their impact.
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