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49 Abstract

50 The extent to which the long-term application of mineral fertilizers regulates the 

51 quantity, quality, and stability of soil organic matter (SOM) in soil matrices remains 

52 unclear. By combining four biomarkers, i.e., free and bound lipids, lignin phenols and 

53 amino sugars, we quantified the molecular composition, decomposition and origins of 

54 SOM in response to 10-year fertilization (400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 and 50 

55 kg K ha−1 yr−1) in a cropland in North China. We focused on two contrasting fractions: 

56 particulate organic matter (POM), and mineral-associated organic matter (MAOM). 

57 Fertilization increased soil organic carbon (SOC) by 23% in MAOM, and altered its 

58 composition and origins, despite having a limited effect on bulk SOC levels. 

59 Fertilization increased plant-derived terpenoids by 46% in POM and long-chain lipids 

60 (≥C20) by 116% in MAOM but decreased short-chain lipids (<C20) by 54% in the former 

61 fraction. Fertilization reduced suberin-derived lipids by 56% in POM and 30% in 

62 MAOM but increased lignin-derived phenols by 74% in POM and 31% in MAOM, 

63 implying that crop residues were preferentially stabilized via the POM form. 

64 Fertilization decreased the contribution of microbial residues to SOC in both the 

65 fractions. Overall, mineral fertilizers tended to reduce labile components within POM 

66 (e.g., short-chain lipids), leading to the accrual of recalcitrant molecules (e.g., long-

67 chain lipids, cutin-derived lipids, and lignin-derived phenols) in the MAOM fraction. 

68 Collectively, our study suggests that mineral fertilizers can increase SOM stability and 

69 persistence by modifying their molecular composition and preservation in the mineral-

70 organic associations in a temperate agroecosystem.
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93 1. Introduction

94 Soil organic matter (SOM) is critical to a functioning agroecosystem because of 

95 its key role in maintaining soil fertility, promoting water retention, and soil organic 

96 carbon (SOC) sequestration (Hoffland et al., 2020; Kopittke et al., 2022). In typical 

97 croplands, large inputs of mineral fertilizers increase crop productivity (Cassman and 

98 Dobermann, 2022; He et al., 2020), leading to greater amounts of carbon entering the 

99 soil via residues, roots and their exudations, consequently regulating SOM turnover 

100 (Averill and Waring, 2018; Man et al., 2021). However, our fundamental understanding 

101 of the direction and magnitude of SOC stabilization and sequestration in response to 

102 nutrient fertilizers remains unclear. Previous studies have reported higher, neutral, and 

103 even lower SOC levels due to fertilizer management across natural and human- 

104 managed ecosystems (Khan et al., 2007; Crème et al., 2018; Ghosh et al., 2018; He et 

105 al., 2018). In intensive agriculture, mineral fertilizers have been the key strategy to 

106 increase and/or maintain crop yields and potential SOC sequestration (Amelung et al., 

107 2020). The observed nutrient-induced changes in SOC accrual have been related to i) 

108 the higher plant carbon input via increased litter and rhizodeposition (He et al., 2018; 

109 Singh and Benbi, 2018), ii) suppressed microbial metabolism and/or microbial biomass 

110 (Boot et al., 2016) and alteration in microbial community structure (Zhang et al., 2018; 

111 Ge et al., 2021; Brown et al., 2022). Furthermore, mineral fertilizer inputs may modify 

112 SOM formation and stabilization via plant inputs, allocation pathways, and 

113 decomposition (Chenu et al., 2019; Song et al., 2019), thus altering its molecular 

114 composition and origins. Alongside the contrasting results on how fertilization 
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115 influences SOC stocks, little information is available about how the application of 

116 mineral fertilizers affects the quality of SOM (e.g., molecules, lability, and sources). 

117 Investigating the molecular composition of SOM helps uncover its origin and 

118 degradation pathway, and thus, an assessment of its lability and stability (Angst et al., 

119 2021). An emerging view is that SOM represents a continuum of progressively 

120 decomposing organic compounds with various stages of biogeochemical oxidation 

121 (Lehmann and Kleber, 2015). This complex mixture is composed of biomolecules, such 

122 as polysaccharides, lipids, lignin, cutin, suberin, and amino sugars (Kögel-Knabner, 

123 2002). Biomarker approaches have been shown to be a powerful tool for profiling SOM 

124 (Amelung et al., 2008; Gao et al., 2021; Ma et al., 2022a). For example, amino sugars 

125 and lignin phenol biomarkers have been used as distinct reporters of microbial- and 

126 plant-derived biomolecules (Thevenot et al., 2010; Joergensen, 2018; Liang et al., 

127 2019). Moreover, long-chain free lipids (≥C20) and steroids are believed to be plant-

128 derived, whereas short-chain lipids (<C20) and simple carbohydrates (e.g., trehalose) 

129 mainly originate from microbes (Bergen et al., 1998; Otto et al., 2005). Bound lipids, 

130 such as cutin and suberin, are plant-characterized biomacromolecules used to trace 

131 inputs from leaves and roots, respectively (Nierop et al., 2003; Otto and Simpson, 

132 2006b; Hamer et al., 2012). However, most studies have focused on the effect of 

133 nutrition input (mostly nitrogen, N) in natural systems and found N input could altere 

134 these SOM components and origins in grasslands (Creme et al., 2017; Crème et al., 

135 2018) and forest ecosystems (Feng et al., 2010; Vandenenden et al., 2018; Wang et al., 

136 2019; Vandenenden et al., 2021). For instance, long-term N fertilization increased 
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137 plant-derived lipids (e.g., steroids, cutin, and suberin) and lignin phenols in a temperate 

138 forest (Wang et al., 2019; Vandenenden et al., 2021) and grasslands (Crème et al., 2018). 

139 However, uncertainties remain as certain components, such as microbial residues, show 

140 inconsistent responses to fertilization (Liang and Balser, 2012; Zhang et al., 2016; Fan 

141 et al., 2020). Presumably, these varied results may be attributed to differences in 

142 fertilizer type, addition rate, duration, soil type, ecosystem and climate regions 

143 (Treseder, 2008; Zhang et al., 2016; Ma et al., 2021; Hu et al., 2022; Ma et al., 2022b). 

144 However, few studies have investigated the molecular composition, origins, and 

145 stabilization of SOM in response to fertilization in cropland soils which is vital given 

146 their greater fertilizers inputs, higher rates of disturbances, lower SOC levels, and 

147 growing obligations to store more carbon in these soils to mitigate climate change.

148 Based on a simple persistence framework, SOM can generally be fractionated into 

149 particulate organic matter (POM) and mineral-associated organic matter (MAOM) 

150 (Cotrufo et al., 2019; Samson et al., 2020). These two operational fractions are 

151 fundamentally distinct in term of their formation, persistence, and functioning (Lavallee 

152 et al., 2020; Witzgall et al., 2021). POM is inextricably linked to soil structure 

153 development and SOM stabilization (Six and Paustian, 2014), which mainly consists of 

154 relatively undecomposed plant fragments (Cotrufo et al., 2015). In contrast, partly 

155 decomposed POM can progressively transform into microbial by-products and absorb 

156 onto the soil mineral surfaces to form MAOM, which represents the core of stable SOC 

157 (Liang et al., 2017; Hemingway et al., 2019; Sokol et al., 2019). MAOM mostly 

158 constitutes microbial-derived compounds (Ludwig et al., 2015) or equal plant- and 
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159 microbial-derived biomolecules (Angst et al., 2021). These differences in function 

160 highlight the need to quantify and characterize POM and MAOM separately (Lavallee 

161 et al., 2020). Increasing evidences have shown that soil and crop management practices 

162 can alter the amount and synthetic composition of SOM in these functional fractions 

163 (Chassé et al., 2021; Kauer et al., 2021; Zhang et al., 2022).

164 To the best of our knowledge, no study to date has specifically reported the 

165 response of SOM molecular composition and origins to long-term application of 

166 mineral fertilizer in POM and MAOM fractions in cropland soils. In the present study, 

167 we combined several key molecular-level biomarker techniques (e.g., free lipids, bound 

168 lipids, lignin-derived phenols, and amino sugars) to investigate the effect of decadal 

169 mineral fertilizers addition on the fate, degradation, and origins (e.g., plant- and 

170 microbial-derived) of functional POM and MAOM fractions from a temperate 

171 agroecosystem in North China. We hypothesized that: 1) mineral fertilizer application 

172 would increase the amount of SOM and lignin-derived phenols, while decreasing 

173 microbial residues, because of stimulated microbial necromass decay; and 2) nutrient-

174 induced changes in SOM composition and origins would differ between POM and 

175 MAOM fractions, where POM would enrich plant-derived SOM, whereas MAOM 

176 would accumulate microbial residue.

177 2. Materials and methods

178 2.1 Site description, experimental design and soil sampling 

179 A long-term field experiment was conducted at the Huantai Agroecosystem 

180 Experiment Station of China Agricultural University (117°58′E, 36°57′N), North China. 
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181 The field site has a typical temperate continental monsoon climate with cold winters 

182 and hot summers. The mean annual temperature is approximately 12℃ and the mean 

183 annual precipitation is 540 mm, with most precipitation occurring from June to August. 

184 The dominant double-crop systems are winter wheat (early October to early June) and 

185 summer corn (middle June to late September). The tested soil was classified as an aquic 

186 inceptisol (a calcareous, fluvo-aquic sandy loam). 

187 The field experiment, established in July 2009, was laid out as a randomized block 

188 design with four treatments (three replicates, each 9m × 9m), two of which were chosen 

189 for the present study. The two treatments included an unfertilized control and mineral 

190 fertilizers application. In the fertilized plot, urea was applied at a total rate of 400 kg N 

191 ha-1 y-1. Half of the urea was applied as a base fertilizer and the other half was 

192 topdressing. Specifically, urea was applied at a rate of 100 kg N ha−1 during the wheat 

193 sowing (October) and shooting (April) stages. The same rate was applied during the 

194 corn sowing (June) and growing season (August). In each fertilization plot, 

195 superphosphate was applied at 120 kg P ha-1 y-1 and potassium sulfate was applied at 

196 50 kg K ha-1 y-1 when wheat was sown in October. The plots were flooded with water 

197 100 mm per time.

198 Using a hand auger (with a diameter of 5 cm), soil cores (0–10 cm depth) were 

199 randomly collected at three locations from each plot in September 2019 and bulked to 

200 obtain a composite sample. This process was repeated for every plot. Subsequently, all 

201 soil samples were sieved (< 2 mm) and visible stones and organic materials (e.g., fine 

202 roots) were removed before dividing each sample into two portions. One portion was 

203 air-dried for the determination of soil physicochemical properties, and another portion 

204 was freeze-dried for physical fractionation and further biomarker analysis. After 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4367521

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



205 removing inorganic carbon with diluted HCl (0.5 mol L-1), the SOC and total nitrogen 

206 (TN) concentrations were determined using an elemental analyzer (vario MACRO cube, 

207 Germany). 

208 Soil fractionation involves dispersing soil samples using low-energy sonication 

209 and separating the samples by wet sieving to obtain the POM and MAOM fractions 

210 (Christensen, 1992). Briefly, freeze-dried soil (50 g) was placed in a 500 mL beaker, 

211 and 250 mL of deionized water was added (soil/water ratio:5:1). The samples were 

212 dispersed in 270 J mL-1 for 15 min using an ultrasonic generator (SCIENTZ JY92-

213 IIN, Ningbo, China). The suspension was passed through a 53-μm sieve to obtain 

214 these two contrasting fractions. 

215 2.2 Targeted compounds identification and quantification

216 SOM biomarkers were extracted using a series of sequential chemical extractions 

217 (Feng and Simpson, 2008). Freeze-dried soil samples were sonicated with organic 

218 solvents to extract free lipids, including n-alkanes, n-alkanols, n-alkanoic acids, and 

219 steroids. After solvent extraction, the soil residues were subjected to base hydrolysis to 

220 obtain bound lipids, which contained suberin-derived compounds (e.g., -hydroxy and 

221 dioic acids) and cutin-derived compounds (e.g., C14-18 hydroxy- and epoxy acids). The 

222 remaining subsamples were air-dried and oxidized with CuO to release lignin-derived 

223 monomers, namely, vanillyl (V), syringyl (S), and cinnamyl (C) compounds. Amino 

224 sugars were separated by HCl hydrolysis (Zhang and Amelung, 1996), including 

225 glucosamine (GluN), galactosamine (GalN), muramic acid (MurN), and mannosamine 
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226 (ManN). After a successive series of extraction and chemical degradation procedures, 

227 the extracts were converted to trimethylsilyl and aldononitrile derivatives, respectively. 

228 The derivatized total extracts were analyzed using a gas chromatograph (GC; Agilent 

229 7890B; Agilent Technologies, Santa Clara, CA, USA, USA) equipped with a mass 

230 spectrometer (MS; Agilent 5977B, Agilent Technologies). The concentrations of 

231 individual extractable compounds were calculated by comparing their peak areas with 

232 those of the standards in the total ion current and then normalized to the mass of 

233 extracted soil. The detailed extraction procedures and quantification methods were 

234 provided in the Supplementary Material.

235 2.3 Biomarker parameters and calculations

236 Several molecular indicators have been used to assess the source and degradation 

237 stages of SOM at the molecular level. For example, free lipids (primarily n-alkanes, n-

238 alkanols, and n-alkanoic acids) can be categorized into two clusters by their carbon 

239 atom numbers: short-chain (<C20) and long-chain (≥C20) lipids. Plant-derived lipids 

240 include long-chain lipids and steroids, whereas microbial-derived SOM include short-

241 chain lipids and trehalose (Otto et al., 2005; Amelung et al., 2008). Molecular proxies 

242 were used to reflect the degradation status of aliphatic lipids by assessing their carbon 

243 chain characteristics, such as the average chain length of n-alkanes (ACLAlk), n-

244 alkanoic acids (ACLFa), odd-over-even predominance values of n-alkanes (OEP) and 

245 even-over-odd predominance of n-alkanoic acids (EOP) (i.e., higher ACL values 

246 correspond to higher degradation) (Otto et al., 2005; Wiesenberg et al., 2010). 
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247 The decomposition of cutin-derived lipids was assessed by the ratio of C16 or C18 

248 ω-hydroxy-alkanoic acids to all hydrolysable C16 or C18 aliphatic lipids (ω-C16/ΣC16 

249 and ω-C18/ΣC18). Both parameters have been reported to increase with progressing cutin 

250 degradation (Otto and Simpson, 2006b; Feng and Simpson, 2007). Moreover, the ratio 

251 of mid-chain-substituted hydroxy and epoxy acids to total cutin-and suberin-derived 

252 compounds (Σmid/ΣS˄C) was calculated to reflect the degradation stage of suberin- 

253 and cutin-derived compounds. A decrease in this ratio implied progressive degradation 

254 of bound lipids (Otto and Simpson, 2006b). Detailed calculation information is 

255 provided in the Supplementary Material.

256 Lignin degradation was reflected by the acid/aldehyde (Ad/Al) ratios of the V and 

257 S units, which have been reported to increase with the progressive oxidation of lignin 

258 (Otto and Simpson, 2006a). According to the release efficiency in three types of lignin 

259 monomers, the plant-derived carbon in SOC was estimated using the following 

260 equation (Yang et al., 2022): 

261                     (1)P =
𝑉

33.3% +
𝑆

90% + 𝐶

 10% × SOC × 100%

262     where V, S, and C represent the lignin phenol monomers (g kg-1), 10% denotes the 

263 general lignin content in the main crops residues (Burgess et al., 2002).

264 Given that the average conversion values from MurN to bacterial carbon are 45 

265 and GluN to fungal carbon are 9, contributions of microbial residual carbon (MRC) to 

266 SOC were calculated based on amino sugar data as follows (Appuhn and Joergensen, 

267 2006; Joergensen, 2018):

268 Bacterial residual C = 45 × MurN                   (2)
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269 Fungal residual C = (GluN/179.2 – 2 × MurN/251.2) × 179.2 × 9         (3)

270 where 179.2 and 251.2 are the molecular weights of glucosamine and muramic 

271 acid, respectively. The total MRC was estimated as the sum of the fungal and bacterial 

272 residual carbon.

273 2.4 Statistical analyses

274 Data are presented as the mean values and standard errors (n = 3). The significant 

275 differences between treatments and between fractions within a treatment were tested 

276 using independent two-sample t-test at p < 0.05 (SPSS v21.0 software). A principal 

277 component analysis (PCA) was performed to evaluate the changes in SOM profiling 

278 (molecular composition, source, and degradation) between treatments and fractions 

279 (OriginPro 2020 software; OriginLab, Northampton, MA, USA). 

280 3. Results

281 3.1 SOC and TN in bulk soil and fractions

282 In the non-fertilized treatment, SOC concentrations were 10.2, 3.2, and 12.8 g kg-1 

283 in the bulk soil, MAOM, and POM, respectively. After 10 years of fertilization, the 

284 SOC concentrations in the fertilized treatment were 11.9, 4.3, and 13.8 g kg-1 in the bulk 

285 soil, MAOM, and POM fractions, respectively (Table S1). The MAOM fraction 

286 dominated the size distribution (>60% of the total recovered mass), and fertilization 

287 increased the MAOM mass by 14% (Fig. 1a). Mineral fertilizer addition altered the 

288 SOC amounts (g C kg -1 bulk soil) stored in the POM and MAOM fractions, with the 

289 majority of SOC being concentrated in the MAOM fraction (approximately 90%). 
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290 Specifically, fertilization increased the amount of SOC by 25% in the MAOM fraction 

291 relative to that in control (Fig. 1b). Fertilization increased the TN concentration in POM 

292 by 64% relative to the unfertilized control and decreased the carbon/nitrogen ratio in 

293 MAOM and bulk soil (Table S1). 

294 3.2 Free lipids compounds in the POM and MAOM fractions

295 The free lipids identified in the POM and MAOM fractions and bulk soils are 

296 shown in Figure 2. For the POM fraction, fertilization decreased the concentrations of 

297 short-chain n-alkanes and n-alkanols by 50% and 57%, respectively, but increased 

298 plant-derived terpenoids (e.g., campesterol, stigmasterol, and sitosterol) by 46.4% 

299 (Table 1; Fig. 2). Fertilization increased the concentrations of long-chain (≥C20) 

300 aliphatic lipids (n-alkanes by 93%, n-alkanols by 156%, and n-alkanoic acids by 161%) 

301 in the MAOM fraction, but decreased short-chain (<C20) n-alkanes and n-alkanols by 

302 50% and 57%, respectively (Table 1). Several molecular indicators were used to assess 

303 the source and degradation status of the free lipids (Fig S1). Overall, ACLAlk and ACLFa 

304 ranged from 26.4–27.7 and 16.6–16.9, respectively, across the fractions and treatments 

305 (Fig. S1a and c). Compared with the control, the fertilization treatment had a higher 

306 ACLAlk in the POM fraction (p < 0.01) than in the MAOM fraction (Fig. S1a). Moreover, 

307 mineral fertilizer application increased the OEP and EOP in the POM fraction (Fig. S1b 

308 and d; p < 0.001). 

309 3.3 Bound lipids in the POM and MAOM fractions

310 Mineral fertilizer application decreased the suberin-derived lipid concentration by 
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311 52% in the POM fraction and 30% in the MAOM fraction (Table 1; p < 0.05), whereas 

312 fertilization did not affect the cutin-derived constituents in both POM and MAOM 

313 fractions. The summed cutin- and/or suberin-derived lipids (ΣS˅C; ΣS˄C) were 

314 relatively lower under fertilization than the control in the POM fraction rather than the 

315 MAOM fraction (Table 1). The addition of mineral fertilizer significantly decreased the 

316 suberin/cutin ratio in the POM fraction (Fig. S2a; p＜0.05). The ω-C18/ΣC18 ratio in the 

317 POM fraction was higher in the fertilized treatment than that in the control treatment 

318 (Fig. S2b; p < 0.05). The ω-C16/ΣC16 ratio in the POM fraction was lower in response 

319 to mineral fertilizer addition that in the unfertilized control (Fig. S2c). In addition, 

320 fertilization resulted in a higher Σmid/ΣS˄C ratio than the control in the POM fraction 

321 (Fig. S2d). 

322 3.4 Lignin-derived phenols in the POM and MAOM fractions

323 Mineral fertilizer application increased the specific and total lignin-derived 

324 phenols in both POM and MAOM fractions (Fig. 2; Table 1). Specifically, fertilized 

325 (cf. control) treatment increased the total lignin-derived phenol concentrations by 74% 

326 and 31% in the POM and MAOM fractions, respectively (Fig. 2; Table 1). The lignin 

327 oxidation ratios, expressed as (Ad/Al)V and (Ad/Al)S, were similar between the two 

328 fertilizer regimes in both the POM and MAOM fractions (Fig. S3). However, the POM 

329 fraction had a higher (Ad/Al)V value than the MAOM fraction within specific treatment, 

330 whereas the reverse trend was found for the (Ad/Al)S ratio between the POM and 

331 MAOM fractions (Fig. S3).
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332 3.5 Amino sugars and microbial necromass in the POM and MAOM fractions

333 Mineral fertilizers application altered the specific amino sugars (e.g., glucosamine, 

334 mannosamine, galactosamine, and muramic acid) between the soil fractions (Fig 2; 

335 Table 1). Fertilization reduced some specific amino sugars (except mannosamine) and 

336 total amino sugars by 31–37% (p < 0.05), whereas the changes in these specific and 

337 total amino sugars were not significant in the MAOM fraction. The changes in fungal 

338 and bacterial MRC in both the POM and MAOM fractions were significant (Fig. 3). 

339 Specifically, mineral fertilizer application decreased bacterial MRC by 37% in the 

340 POM fraction, whereas MRC in the MAOM fraction was not significantly different 

341 between the treatments. The mineral fertilizer treatment resulted in a higher bacterial 

342 MRC in the MAOM than in the POM fraction (Fig. 3a). Similarly, a higher fungal MRC 

343 was observed in the MAOM fraction than in the POM fraction across treatments, 

344 despite insignificant changes between treatments (Fig. 3b). Fertilization decreased the 

345 bacterial-to-fungal MRC ratio (B/F) in the POM fraction rather than in the MAOM 

346 fraction (Fig. 3c), whereas this ratio was higher in POM than MAOM fraction across 

347 the treatments. However, fertilization decreased the contributions of bacterial MRC to 

348 SOC in the POM fraction relative to the control (Fig. 3 d), and similar trend was 

349 observed in the contributions of fungal MRC and total MRC to SOC in the MAOM 

350 fraction (Fig. 3 d–f). Across treatments, the POM fraction had higher ratios of bacterial 

351 MRC, fungal MRC and total MRC to SOC than did the MAOM fraction.
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352 3.6 SOM compounds and proxies in the POM and MAOM fractions

353 Using the molecular components and related proxies analyzed above, changes in 

354 SOM status with fertilization in the POM and MAOM fractions were evaluated using 

355 principal component analysis (Fig. 4). The resultant principal components (PCs) 

356 explained 78.7% of the variance, and both treatments were separated from one another 

357 along PC1, whereas both fractions were separated from one another along PC2 (Fig. 4). 

358 B/F, (Ad/Al)V, ω-C18/ΣC18, and ACLFa had higher negative loading scores, while EOP, 

359 ACLFa, ω-C16/ΣC16, ω-C18/ΣC18, and suberin/cutin had higher positive loading scores 

360 along PC1. Control treatment was distinguished by ω-C16/ΣC16, ω-C18/ΣC18, and B/F, 

361 whereas fertilized treatment was distinguished by Σmid/ΣS˄C and ACLAlk in the POM 

362 fraction. In contrast, in the MAOM fraction, control treatment was shaped by total 

363 amino sugars (AS), bacterial MRC, and total bound lipids, whereas fertilized treatment 

364 was shaped by total lignin-derived phenols (VSC), total free lipids, EOP, and OEP. The 

365 resultant PCs explained 74.6% and 66.1% of the variance in the POM and MAOM 

366 fractions, respectively (Fig. S4). After decadal fertilization, the contribution of plant-

367 derived carbon to SOC increased from 38% to 52% in POM and from 17% to 21% in 

368 MAOM, whereas the contribution of microbial-derived carbon to SOC decreased from 

369 54% to 38% in POM and 11% to 9% in MAOM (Fig. 5). 

370 4. Discussion

371 4.1 Effect of mineral fertilizers on SOM origins in the POM and MAOM fractions

372 Overall, our results showed that decadal fertilization significantly altered the 
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373 molecular composition and origins of SOC rather than its concentration (Fig 1; Table 

374 1). The lack of significant changes in SOC concentrations with mineral fertilizers may 

375 be attributed to the balance between carbon inputs and degradation (Man et al., 2021). 

376 This may also be because SOC accrual in response to fertilization needs decades or 

377 longer to manifest (Wiesmeier et al., 2019; Xu et al., 2021). Despite similar SOC 

378 concentrations in bulk soil, the application of mineral fertilizer elevated the SOC 

379 amount by 26% in the MAOM fraction, implying enhanced carbon persistence (Kleber 

380 et al., 2015).

381 We found a higher proportion of plant-derived carbon (29–32% of SOC in bulk 

382 soils) and a lower proportion of microbial-derived carbon (13–20% of SOC) (Fig. 5), 

383 which is consistent with a previous study using the same methodology (Chen et al., 

384 2021). However, some previous reports have estimated that MRC contributes over 50% 

385 to SOC in temperate cropland soil (Liang et al., 2019; Angst et al., 2021; Wang et al., 

386 2021), which is generally higher than that in the current study. This is because soil pH 

387 has a negative effect on amino sugars accumulation (Ni et al., 2020), and the alkaline 

388 soil conditions in this study (Table S1) may be the reason for the lower contribution of 

389 MRC to SOC.

390 Our results showed that mineral fertilizer application increased the contribution of 

391 plant-derived carbon to SOC in bulk soils (32% vs. 29%) but decreased the microbial-

392 derived contribution (13% vs. 20%) (Fig. 5). This may be attributed to higher crop 

393 carbon inputs after fertilization (He et al., 2018). Furthermore, fertilization has been 

394 shown to weaken microbial anabolism and necromass accumulation (Janssens et al., 
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395 2010). Regarding the fractions, we observed a much higher contribution of plant-

396 derived carbon in the POM than in the MAOM fraction (Fig. 5). This suggests that 

397 POM acts as a functional hot-spot where microorganisms can transform the plant-

398 derived carbon into SOM to increase persistence through the formation of organo-

399 mineral associations (i.e., MAOM) (Witzgall et al., 2021). The contribution of 

400 microbial residues to SOC in the MAOM fraction was lower than that in the POM 

401 fraction, which could be explained by the dilution effects from the incorporation of 

402 other SOC components in the MAOM fraction, resulting in higher amounts of SOC 

403 than the POM fraction (Fig. 1b). Moreover, PCA further verified that the POM and 

404 MAOM fractions differed in their composition (Fig. 4). 

405 4.2 Different response of free lipids, bound lipids, and lignin-derived phenols to mineral 

406 fertilizers 

407 Fertilization increased plant-derived steroids in the POM fraction (Fig 2; Table 1), 

408 which is in line with previous studies that reported that nitrogen addition selectively 

409 preserved steroids from cropland (Man et al., 2021) and forest soils (Wang et al., 2019; 

410 Vandenenden et al., 2021). The elevated levels of steroids after fertilization may 

411 originate from crop residue input. This coincided with the higher contribution of plant-

412 derived carbon under fertilization in the POM fraction (Fig. 5). Thus, as a characteristic 

413 of fresh plant material, higher OEP values in the POM fraction in fertilized soils (Fig. 

414 S1b) further supported this inference (Schäfer et al., 2016). When fresh crop residues 

415 enter the POM fraction, labile components such as short-chain lipids may be 

416 decomposed faster in the fertilized treatment (Miller et al., 2019; Jilling et al., 2020; 
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417 Thomas et al., 2021), as evidenced by the higher ACLAlk in the POM fraction under 

418 fertilized soils (Fig. S1a). In contrast, fertilization selectively preserved long-chain 

419 lipids in the MAOM fraction (Table 1), probably because of their recalcitrance and 

420 affinity with mineral surfaces to form mineral-organic associations (Wiesenberg et al., 

421 2010). The inconsistent responses of short- and long-chain aliphatic lipids in the POM 

422 and MAOM fractions indicate that mineral fertilizers may stimulate the preferential 

423 degradation of specific free lipid components (e.g., <C20 n-alkanes and n-alkanols), 

424 leading to the relative enrichment of long-chain lipids in the MAOM fraction (Table 1). 

425 The present study showed that fertilization reduced the suberin-derived 

426 compounds relative to the control (Table 1), reflecting lower root-derived carbon 

427 accrual in the fertilized soil. This result supports the argument that less crop carbon is 

428 allocated to root growth under higher soil nutrient availability (Li et al., 2015). The 

429 lower suberin/cutin ratio in the fertilized treatment (Fig S2a) implies that fertilization 

430 preferentially promoted aboveground growth relative to belowground (Lu et al., 2011). 

431 The reduced ω-C16/ΣC16 ratio under fertilization in the POM fraction (Fig. S2c) 

432 indicated inhibited degradation of cutin-derived compounds under fertilization, which 

433 is supported by other study in temperate forest soils (Vandenenden et al., 2021). 

434 Interestingly, the application of mineral fertilizers suppressed cutin-derived compounds 

435 degradation in POM, but not in the MAOM fraction (Fig. S2), indicating that the POM 

436 fraction is more susceptible to nutrient management than the MAOM fraction (Brown 

437 et al., 2014; Miller et al., 2019; Jilling et al., 2020; Lavallee et al., 2020). 

438 Mineral fertilizers application increased lignin-derived phenols in both POM and 
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439 MAOM fractions (Fig. 2; Table 1), which was likely due to the increasing straw input 

440 (Liu et al., 2016). Lignin distribution in soils is the result of input and decomposition 

441 processes (Thevenot et al., 2010). In the present study, lignin degradation proxies, as 

442 assessed by (Ad/Al)V and (Ad/Al)S, were not affected by the application of mineral 

443 fertilizers (Fig. S3). This further indicated that the elevated lignin-derived phenols 

444 resulted from the added crop residue inputs in the cropland. Regarding the soil fractions, 

445 MAOM had higher (Ad/Al)S value than the POM fraction across treatments, indicating 

446 higher degradation of S monomers in MAOM (Fig. S3a). However, we observed the 

447 opposite pattern for (Ad/Al)v between the POM and MAOM fractions (Fig. S3b). It is 

448 likely that V monomers are more recalcitrant than S monomers during decomposition 

449 (Hedges et al., 1988; Bahri et al., 2006). Thus, these biomolecules have a higher 

450 probability of interacting with mineral surfaces to form mineral-associated complexity 

451 and aggregate (Clemente et al., 2012). 

452 4.3 Different response of microbial residues to mineral fertilizers

453 Mineral fertilizer application significantly decreased the individual and total 

454 amino sugars and MRC in both POM and MAOM fractions (Table1; Fig. 3), which is 

455 consistent with other reports in cropland (Chen et al., 2020), grassland, and forest 

456 ecosystems (Liang and Balser, 2012; Yuan et al., 2020). Lower microbial residues in 

457 fertilized treatments indicate that microbes tend to invest less carbon in anabolism 

458 during fertilization (Spohn et al., 2016). Microbial necromass accumulates 

459 continuously through the formation of microbial biomass and stabilization of its 

460 residues and is gradually consumed through mineralization (Schimel and Schaeffer, 
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461 2012; Liang et al., 2019). The decreased contribution of microbial residues to SOC may 

462 be associated with enhanced microbial necromass decomposition in response to 

463 fertilization (Wang et al., 2021). Although amino sugars play a crucial role in SOM 

464 formation, they can be utilized as energy sources (e.g., carbon and nitrogen) to feed 

465 microbial growth and activities (Wang et al., 2021). Indeed, long-term fertilization 

466 caused carbon limitation in soil (Chen et al., 2018), as evidenced by the lower SOC/TN 

467 in our study (Table S1), and thus may decompose microbial necromass as energy to 

468 compensate for the microbial carbon demand (Cui et al., 2020; Wang et al., 2021). The 

469 additional phosphate fertilizer could promote microbial carbon acquisition by 

470 increasing the activity of β-N-acetyl-glucosaminidase and thus microbial residues 

471 decomposition (Sinsabaugh et al., 2008; Yuan et al., 2020). 

472 Mineral fertilizers application lowered the B/F ratio in the POM fraction (Fig. 3c), 

473 implying that bacterial residues had a relatively faster turnover rate than fungal residues 

474 (He et al., 2011). In addition, microbes prefer to use labile substrates enriched in POM 

475 form (Cui et al., 2020; Witzgall et al., 2021), resulting in lower bacterial residues due 

476 to less protection (Fig. 3a and d). However, bacterial cells can attach directly to clay 

477 surfaces non-specifically (Olivelli et al., 2020), which resulted in insignificant 

478 differences in bacterial MRC and the contribution of bacterial MRC to SOC within the 

479 MAOM fraction. In the present study, higher amino sugars, fungal MRC, and bacterial 

480 MRC were observed in the MAOM fraction than in POM (Fig. 3; p < 0.05). This is 

481 likely because apart from being attached to mineral surfaces, microbial residues may 

482 be entrapped in the MAOM fraction, where enzymes are unable to reach (Angst et al., 
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483 2021). 

484 5. Conclusion

485 The current study found that a 10-year period fertilization altered the molecular 

486 composition of SOM rather than its quantity. Furthermore, it provided detailed 

487 information on the composition and origins of SOM related to its stabilization and 

488 persistence and highlighted the different responses of plant-derived carbon and MRC 

489 to mineral fertilizers in the contrasting POM and MAOM fractions. Collectively, the 

490 results suggest that mineral fertilizers increase the size of the MAOM-associated carbon 

491 pools, by increasing stable components, which enhances SOC sequestration and its 

492 persistence in temperate agroecosystems.
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813

814 Table 1. Concentrations of soil organic matter (SOM) components in particulate organic matter 

815 (POM) and mineral-associated organic matter (MAOM) fractions from a 10-year field experiment 

816 in North China Plain where replicated plots received either no fertilizers or mineral fertilizers.

POM MAOM
Compounds name

Control Fertilization Control Fertilization
Solvent-extracted products (μg g-1 soil) 
Short-chain n-alkanes (<C20) 0.18±0.02* 0.09±0.01 0.55±0.04 0.90±0.23
Long-chain n-alkanes (≥C20) 2.11±0.31 1.44±0.17 3.92±0.33 7.55±0.54*
Short-chain n-alkanols 0.21±0.05* 0.09±0.02 0.72±0.04 1.12±0.19
Long-chain n-alkanols 1.16±0.14 0.85±0.07 1.11±0.09 2.84±0.24*
Short-chain n-alkanoic acid 17. 8±2.0 17.4±2.3 39.8±2.6 51.5±4.4
Long-chain n-alkanoic acid 1.82±0.3 1.29±0.31 1.09±0.06 2.84±0.48*
Carbohydrate 2.37±0.32 2.14±0.48 2.68±0.14 2.48±0.42
Steroids 1.12±0.15 2.64±0.21* 2.81±0.15 2.95±0.76
Base hydrolyzed products (μg g-1 soil) 
Suberin-derived lipids 4.30±0.45* 2.08±0.17 6.07±0.38* 4.25±0.18
Cutin-derived lipids 6.68±1.58 4.83±0.22 10.27±1.06 10.25±1.06
Suberin- or cutin-derived lipids 8.46±1.69* 4.57±0.3 11.45±0.95 11.87±1.25
Suberin- and cutin-derived lipids 19.4±3.67* 11.5±0.68 27.8±2.3 26.4±2.1
CuO oxidized products (μg g-1 soil) 
Vanillyls 8.85±0.88 15.76±1.64* 36.65±3.51 55.4±3.91*
Syringyls 7.00±0.82 12.00±1.44* 35.06±4.57 48.68±4.35
Cinnamyls 2.19±0.23 3.67±0.74* 5.2±0.74 7.99±1.26*
Total lignin-derived phenols 18.0±1.7 31.4±3.8* 76.9±8.7 112.1±5.8*
Amino sugars (μg g-1 soil) 
Glucosamine 47.4±0.7* 32.9±5.34 98.5±8.1 95.6±3.8
Mannose 1.41±0.06 1.34±0.15 1.61±0.15 3.47±0.26*
Galactosamine 24.4±0.3* 15. 7±2.7 34.8±5.0 29.1±0.3
Muramic acid 3.12±0.06* 1.98±0.31 4.08±0.37 4.26±0.18
Total amino sugars 76.3±1.0* 51. 9±8. 4 139.0±13.5 132.5±3.7

817 Values are presented as means ±  SEM (n = 3). Values that are statistically different between 

818 control and fertilization treatments are indicated by *p < 0.05. SOM compound concentrations were 

819 normalised to bulk soil dry weight (μg g-1 soil). 

820
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881

882

883 Figure captions:

884 Fig. 1. Response of fraction mass proportion (a) and soil organic carbon (SOC) amount 

885 (b) changes in particulate organic matter (POM) and mineral-associated organic matter 

886 (MAOM) fractions as influenced by mineral fertilizers application. Values represent 

887 means ± SEM (n = 3) for control and fertilization treatments. *p < 0.05, **p < 0.01, 

888 and ***p < 0.001.  

889

890 Fig. 2. Response of various extractable biomarkers to mineral fertilizers application 

891 compared to control, of the bulk soil, particulate organic matter (POM), and mineral-

892 associated organic matter (MAOM) fractions. Bars indicate differences in biomarkers 

893 concentration between the control and fertilization treatments. Positive values indicate 

894 increased concentration and negative values indicate decreased concentration compared 

895 to control.

896

897 Fig. 3. Response of bacterial, fungal, and their microbial residual carbon (MRC) 

898 contribution to soil organic carbon (SOC) accumulation in the particulate organic 

899 matter (POM) and mineral-associated organic matter (MAOM) fractions as influenced 

900 by mineral fertilizer application. Values represent means ± SEM (n = 3) for control and 

901 fertilization treatments. *p < 0.05, **p < 0.01, and ***p < 0.001.

902
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903 Fig. 4. Biplots of principal component analysis (PCA) between compounds and related 

904 degradation proxies. Numbers in parenthesis represent data variations explained by first 

905 two principal components (PCs). ACLAlk: average chain length of n-alkanes; ACLFa: 

906 average chain length of n-alkanoic acids; OEP: odd-over-even predominance of n-

907 alkanes; EOP: even-over-odd predominance of n-alkanoic acids; ω-C16/ΣC16: C16 ω-

908 hydroxy-alkanoic acids to all hydrolysable C16 aliphatic lipids; ω-C18/ΣC18: C18 ω-

909 hydroxy-alkanoic acids to all hydrolysable C18 aliphatic lipids; Σmid/ΣS˄C: the ratio of 

910 mid-chain-substituted hydroxy and epoxy acids to total cutin- and suberin-derived 

911 compounds; (Ad/Al)S: the ratio of acid to aldehyde for syringyls; (Ad/Al)V: the ratio of 

912 acid to aldehyde for vanillyls; VSC: total lignin-derived phenols; AS: total amino 

913 sugars; Fungal MRC: fungal microbial residual carbon; Bacterial MRC: bacterial 

914 microbial residual carbon

915

916 Fig. 5. Contributions of plant- (quantified as lignin), bacterial-, and fungal-derived 

917 carbon to soil organic carbon (SOC) in corresponding fractions.

918
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