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Abstract
The aim of this study is to investigate for the first time the uptake and ecotoxicological effects of nanoplastics (NPs) in a
marine cnidarian. Ephyrae of the moon jellyfish Aurelia sp. of different ages (0 and 7 days old) were exposed to negatively
charged polystyrene NPs for 24 h; then, the uptake was assessed through traditional and novel techniques, namely
microscopy and three-dimensional (3D) holotomography. Immobility and behavioral responses (frequency of pulsations) of
ephyrae were also investigated to clarify if NP toxicity differed along the first life stages. NP uptake was observed in ephyrae
thanks to the 3D technique. Such internalization did not affect survival, but it temporarily impaired the pulsation mode only
in 0 day old ephyrae. This may be ascribed to the negative charged NPs, contributing to jellyfish behavioral alteration. These
findings promote 3D holotomography as a suitable tool to detect NPs in marine organisms. Moreover, this study
recommends the use of cnidarians of different ages to better assess NP ecotoxicological effects in these organisms, key
components of the marine food web.
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Introduction

Plastics have revolutionized our daily lives so much that our
age has been defined as the “Plastic Age” (Thompson et al.
2009). Global plastic production has increased exponentially
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in the last decades (UNEP 2021), reaching 367 million tons
globally in 2020 (Plastics Europe 2021). Due to their resis-
tance and hydrophobicity, plastics are easily dispersed from
terrestrial to aquatic ecosystems (Wang et al. 2021). Once in
the aquatic environment, plastics undergo degradation,
breaking down into smaller particles at micro and nanoscales,
also known as microplastics (materials between 0,1 μm and
5mm) and nanoplastics (NPs, between 1 and 100 nm; Lam-
bert and Wagner 2016). Due to their wide distribution and
size, microplastics and NPs can be ingested by marine biota
and transferred along the trophic chain, representing a serious
problem (Nelms et al. 2018; Botterell et al. 2019; Markic et al.
2019; Barria et al. 2020; Natarajan et al. 2022). Moreover,
these particles may induce toxicity due to the additives that
are incorporated during their manufacture, and to other che-
micals able to concentrate during their time in marine envir-
onments (Rios et al. 2007; Oehlmann et al. 2009; Heskett
et al. 2012). Once ingested, toxins can be leached from the
particles and enter tissues, resulting in endocrine disruption or
cellular toxicity (Galloway 2015; Rochman 2015; Rummel
et al. 2019). Recently, microplastics have been reported in
gelatinous zooplankton (Lengar et al. 2021), such as cni-
darians (Sucharitakul et al. 2020; Rapp et al. 2021; Eom et al.
2022), where they temporarily affected jellyfish survival and
behavior (Costa et al. 2020a) Sucharitakul et al. 2020; Lengar
et al. 2021; Rapp et al. 2021; Eom et al. 2022). Jellyfish exert
an important ecological role in the ecosystem (Boero et al.
2008; Brodeur et al. 2016), being key components of the
marine food web (Purcell et al. 2007). They are regulators of
marine biogeochemical fluxes (Faimali et al. 2017; Baez et al.
2022) and sensitive to a wide class of contaminants, including
plastics (Faimali et al. 2014, Costa et al. 2015, 2020a;
Gambardella et al. 2015). Thus, they can ingest microplastics
in a direct or indirect way through trophic transfer from
contaminated prey (Costa et al. 2020b).

Thanks to their ability to ingest microplastics and con-
sidering that jellyfish and plastic distribution is influenced
by currents and winds (Macali et al. 2018), jellyfish have
been proposed as innovative bioindicators for plastic pol-
lution in pelagic waters and in monitoring surveys (Macali
and Bergami 2020), but not in in discharged treated was-
tewater (Sucharitakul et al. 2021). Although microplastic
ingestion and ecotoxicological effects in marine jellyfish
have recently been documented (Costa et al. 2020a),
research on NPs in jellyfish and in other cnidarians is still
sparse.

The properties of NPs differ from microplastics (Gigault
et al. 2021). NPs can have emerging properties (i.e.,
increasing hydrophobic interactions that lead to protein
conformational changes; Auclair et al. 2017) at the nanos-
cale. Due to their small size and high surface area to volume
ratio, NPs can permeate biological membranes (Lambert
and Wagner 2016), resulting in a toxicity increase relative

to micro sized particles and their bulk counterparts
(Andrady 2017; Triebskorn et al. 2019). The high NP sur-
face area to mass ratio may also retain more toxic chemicals
than micro or bulk material, increasing overall hazard
(Koelman et al. 2015). Moreover, the counterbalance of
several parameters (presence of salts, natural organic matter
and colloids) of seawater may modify NP properties and
behavior (Corsi et al. 2014; Bergami et al. 2016; Corsi et al.
2020, 2021; González-Fernández et al. 2021) and therefore,
NP toxicity. Considering the growing concern around
unexplored NP toxicity in the marine environment and
jellyfish’s ecological role in the marine food web, the
potential uptake and ecotoxicological effects of NPs in the
ephyrae of the moon jellyfish Aurelia sp. were investigated.
In this study polystyrene nanoparticles were used, this
polymer is one of the most abundant worldwide, repre-
senting about 10% of total plastic production (Verschoor
et al. 2017). Recently, polystyrene NPs have been detected
in the freshwater cnidarian Hydra attenuata, where they
caused morphological changes and sub-lethal effects
(Gagnè et al. 2019; Auclair and Gaugnè 2020; Auclair et al.
2020). In the present study NP uptake was assessed in
marine jellyfish ephyrae by means of an epi-fluorescent and
novel technique, namely three-dimensional (3D) holoto-
mographic microscopy (Costa et al 2020a). Immobility and
behavior, i.e., frequency of pulsations (Fp), were investi-
gated as ecotoxicological endpoints in jellyfish ephyrae of
two different ages—0 day old and 7 days old—in order to
understand if the sensitivity to NPs differs along the first
developmental stage of the life cycle.

Materials and methods

Polystyrene nanoparticles

Visible blue-dyed and fluorescent polystyrene NPs (nominal
diameter: 100 nm) were purchased (cat. nr. 1100B, 2002;
Phosphorex) and supplied as a 10 g/L in deionized water.
Visible blue-dyed and fluorescently labeled (345 nm exci-
tation/435 nm emission) NPs were used for jellyfish toxicity
bioassays and uptake respectively. Fluorescently labeled
NPs were supplied in deionized water containing a small
amount of surfactant and 2 mM of sodium azide as an anti-
microbial agent; NPs had no funcionalization. Nanoplastics
were sonicated for 1 min and suspended in 0.22 µm filtered
natural seawater (FSW) up to 100 mg/L suspension. The
latter was used to bring NPs to 0.1, 1 and 10mg/L. Since no
environmentally relevant or high concentrations are avail-
able for NPs (Koelmans et al. 2015), we selected those
reported for microplastics (Gambardella et al. 2017, 2018).

After NP suspension preparation, toxicity tests were
immediately performed.
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Aurelia sp. ephyrae recruitment

Colonies of Aurelia sp. polyps were provided by Acquario
di Genova, Costa Edutainment S.p.A., and transported to
CNR-IAS. They were placed in a thermostatic room (20 °C)
in 1.5 L tanks, filled with FSW, gently aerated and fed daily
with nauplii of Artemia salina (about 40 nauplii/mL); sea
water was changed every two days. Strobilation was
induced by thermic shock and food starvation: polyps were
moved to 1.5 L tanks at 10 °C and were not fed; seawater
was not changed for one month. After strobilation,120
ephyrae (0 day old) were collected and transferred by using
a pipette into a beaker to evaluate NP ingestion and toxicity.
Another 120 ephyrae were isolated from polyp culture and
kept at 20 °C in a 2 L glass beaker with central aeration for a
week in order to allow free movement of the organisms
(Widmer 2008). During this period, ephyrae were fed every
day with Artemia sp. nauplii and water was changed twice a
week according to Olesen et al. (1996). Ephyrae were kept
unfed 24 h prior to the experiments according to methods
detailed in Shafer et al. (2021).

NP ingestion

Visible blue-particles and fluorescent blue polystyrene
particles were used to detect NPs in the jellyfish ephyrae.
Ephyrae collected after strobilation (0 day old) and those
that were maintained in FSW for 1 week were individually
placed into a multiwell plate with 2 mL of NP suspensions
(0-0.1-1-10 mg/L) for 24 h. Three replicates were prepared
for each dilution; each replicate contained 8 ephyrae indi-
vidually placed in each well according to Faimali et al.
(2014). Plates were kept in a thermostatic room (20 °C) in
dark conditions for 24 h (35 ± 2‰ salinity; 8.0 pH). After
this time exposure, the ephyrae were washed 3 times with
new FSW to remove potential NPs bound to the exterior of
the body (Nasser and Lynch 2015). They were anesthetized
with menthol crystals fixed in 4% paraformaldehyde solu-
tion in FSW, and mounted in glycerol-PBS (1:1) for the
observation under the microscope (Olympus) and three-
dimensional (3D) holotomographic microscope (Tomocube
Inc. model HT-2), according to Costa et al. (2020a). This
technology can acquire a fluorescence signal and a three-
dimensional map of the sample refractive index at the same
time. The resulting 3D holotomography map shows the
different structures (characterized by different refractive
index ranges) stained with different colors, together with the
fluorescence signal associated to the NPs.

Toxicity test

Visible blue particles were used to perform toxicity tests in
jellyfish ephyrae. The same dilutions described for NP

uptake were used and prepared according to the previous
section. 0 and 7 days old ephyrae were individually placed
into a multiwell plate containing 2 mL of NPs dilutions (at
0, 0.1, 1, 10 mg/l) for 24 h, as reported in the previous
paragraph. For each dilution, three replicates (each one
consisting of 8 ephyrae) were prepared. After 24 h, acute
and behavioral endpoints were investigated. The Immobility
percentage (% I) - meaning ephyra capability to perform
any movement - was considered the acute endpoint; this
percentage was calculated for each dilution and compared to
controls. The percentage of the Alteration of the frequency
of pulsations (% AFp) was considered the behavioral end-
point, meaning the pulsation number made by each ephyra
in one minute. This percentage was calculated recording the
Fp made by each ephyra in 1 minute, according to literature
(Faimali et al. 2014, Costa et al. 2015, 2020a, 2020b). For
each dilution and controls, the average Fp was calculated;
then, the AFp percentage was calculated for each treatment
and for each replicate against controls according to the
formula: %AFp= [(Fp treated - Fp control)/ Fp control]/
100. For toxicity tests, three independent experiments were
repeated and carried out in three replicates. Both endpoints
were assessed by using an automatic recording system
coupled with a specifically designed video graphics analy-
zer, called the Swimming Behavioral Recorder (SBR, Fai-
mali et al. 2014). This system is based on a video camera
coupled with image analysis software (BIOMONITOR,
developed by On Air srl, Genova, Italy) designed to track
and analyze linear swimming behavior of aquatic inverte-
brates. The ephyrae were dark-adapted for 2 min (time fixed
by preliminary tests to reach steady frequency of pulsa-
tions), before video-recording, according to Faimali et al.
(2006).

Recovery test

After recording immobility and Fp for each treatment of NP
tested, jellyfish exposed to visible blue NPs were washed
three times with fresh FSW to remove NPs attached to the
gelatinous body. Then, ephyrae were placed in new multi-
well plates filled with clean FSW under the same experi-
mental conditions following the toxicity tests. After 24 h,
the pulsations made by each ephyra from the recovery of
both treatments (ephyrae previously exposed to NPs and
then in clean seawater) and the control, were measured by
SBR system, according to Costa et al. (2020a).

Statistical analysis

The median Effective Concentration (EC50: NP con-
centration resulting in 50% Immobility or Alteration of
Frequency pulsation) in the exposed ephyrae and related
95% Confidence Limits (CL) were calculated after 24 h of
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exposure, by using Trimmed Spearman–Karber (TSK)
analysis (Finney 1978). Significant differences between
controls and NP-exposed jellyfish of the same ephyra age
were identified using one-way analysis of variance
(ANOVA) followed by the Tukey test. When data failed to
meet normality assumption, non-parametric Kruskal Wallis
test and Mann Whitney tests were used. For the recovery
test, the analysis was performed comparing the Fp between
ephyrae collected immediately after the toxicity test to
10 mg/L NPs and ephyrae placed in clean FSW. Data were
considered significantly different when p < 0.05. For data
analysis, SPSS statistical software (Statistical Package for
the Social Sciences, Version 20) was used.

Results

Uptake

The presence of NPs in 0 and 7 days old ephyrae after
exposure to environmental and high concentrations is
reported in Figs. 1 and 2, respectively.

A small percentage of ephyrae at both ages ingested NPs
at 0.1 mg/L (<10%, Table 1); such NPs were mainly loca-
lized in the gastric filaments of 0 day old ephyrae and in the
manubrium of 7 days old ephyrae, bearing the mouth at its
tip (Fig. 1). About 30% of ephyrae at both ages showed blue
stained NPs at 1 mg/L exposure (Fig. 2B, E; Table 1), while
all ephyrae ingested NPs at the highest tested treatment
(10 mg/L; Fig. 2C, F; Table 1). NPs formed agglomerates in
all treatments within 24 h (i.e., Fig. 2C).

The internalization of polystyrene NPs into the jellyfish
body was assessed using holotomography. Fluorescent blue

NPs were localized in the ephyrae jellyfish body after
exposure to all treatments (Fig. 3).

The 3D representation acquired with the holotomogram
allowed us to locate polystyrene NPs (refractive index:
1.58) inside the ephyra jellyfish body, in proximity of the
cnidocytes containing the nematocysts (Suppl. Data).

Suppl. Data. Uptake of blue fluorescent (refractive
index 1.58) NPs in Aurelia sp. ephyrae jellyfish, acquired
with the 3D holotomographic microscope. NPs are loca-
lized inside the gelatinous body (yellow regions indicate
the body; 1.355–1.378 refractive index range), among the
nematocysts (purple regions; 1.398–1.412 refractive
index range).

Toxicity

Polystyrene NPs did not affect immobility of 0 day old or
7 days old Aurelia sp. ephyrae (Fig. 4). Less than 10%
immobility was found at any treatments, thus no significant
difference between NP-treated ephyrae and controls was
observed (p > 0.05) and it was not possible to calculate an
EC50 (>10 mg/L).

However, NPs impaired jellyfish behavior after 24 h
exposure in a dose-dependent way (Fig. 5).

An alteration of the frequency of pulsations was found in
jellyfish of both ages; specifically, 2–57% and 9–24% effect
were observed in 0 and 7 days old ephyrae, respectively.
Despite it, a toxic effect was only observed in 0 day old
ephyrae (EC50: 7.20 mg/L, confidence limits: 4.82–10mg/L).
After 24 h recovery in clean FSW, ephyrae of both ages
previously exposed to 10mg/L NP concentrations showed a
pulsation frequency comparable to controls, since the
observed effect ranged from 10 to 14% (Fig. 6).

Fig. 1 Zero day old(A–C) and 7 days old (D–F) ephyrae of Aurelia sp.
exposed to 0 and 0.1 mg/L of polystyrene nanoparticles (NPs) for 24 h.
A, D: control (0 mg/L). A, B, D, E: bright field. C, F: fluorescence

images using DAPI. Arrows indicate ephyrae gastric filaments. mn:
manubrium. A, D: Bars equal 1 mm. B, C, E, F: Bars equal 100 µm
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Discussion

In this study NP uptake and ecotoxicological effects in a
marine jellyfish are reported. Aurelia sp. is a pelagic jelly-
fish, known to incorporate microplastics at ephyra and
medusa stages (Costa et al. 2020a, 2020b; Sucharitakul
et al. 2020), but to date no evidence of NP ingestion in any
marine cnidarians is available. NPs are difficult to detect
due to their low mass and small size (Nguyen et al. 2019);
in this study NP uptake was observed in 0 day old and
7 days old jellyfish ephyrae by using conventional and
novel microscopy techniques.

The uptake was first detected by using traditional
microscopy, since NPs form aggregates in seawater,
resulting in easy identification, as reported in previous
studies where the same polystyrene NPs were observed in
marine crustaceans and rotifers (Gambardella et al.
2017, 2018). Specifically, NPs aggregated up to reach an
average size of 2471 nm, 1640 nm and 4156 nm after 24 h
in seawater at 0,1, 1 and 10 mg/L concentrations, respec-
tively (Gambardella et al. 2018).

Polystyrene NPs were localized in the mouth of jellyfish
ephyrae, but conventional light microscopy constraints did
not allow confirmation of NP internalization in jellyfish

tissues. Recently the use of different techniques has been
applied to detect and verify NP ingestion in biota (Nguyen
et al. 2019), including innovative interferometric techniques
such as the tomographic microscopy (Mariano et al. 2021),
that successfully verified microplastic ingestion in jellyfish
(Costa et al. 2020a). In this study, NP internalization was
demonstrated in the gelatinous body of jellyfish ephyrae by
using the holotomographic approach. The latter can provide
a 3D refractive index distribution of the sample based on a
2D projection series, revealing the intra-cellular structure
(Kus 2022). NPs were previously observed in mammalian
cells by using this technique (Roshanzadeh et al. 2021);
however, to our knowledge no applications on NPs in
marine biota has been reported to date. In this study, we
suggest the holotomographic approach as a promising novel
tool to detect NPs in marine organisms.

By measuring fluorescence changes using a molecular
rotor probe, polystyrene NP has been recently detected in
freshwater cnidarians (i.e., Hydra; Gagnè et al. 2019;
Auclair et al. 2020). Here, we report that marine jellyfish
were capable of internalizing and retaining polystyrene NPs
within their body for 24 h Costa et al. 2020a, 2020b.
Although ephyrae of both 0 day and 7 days internalized
NPs, the pulsing behavior was only affected in the younger
ephyrae. These findings may be related to the rhopalia
development, complex sensory organs associated with the
pulse mode and swimming (Schwab 1977).

Studies report that a distinct rhopalium is not developed
until 72 h after strobilation induction in jellyfish; thus rho-
palia growth and differentiation take place after 3 days and
specifically in 3 day old ephyrae up to 5 day old ephyrae
(Spangenberg 1991). The rhopalial nervous system differ-
entiates first, the gravity sensing organ, followed by the

Fig. 2 Zero day old (A–C) and 7 days old (D–F) ephyrae of Aurelia sp. exposed to 0, 1 and 10 mg/L polystyrene nanoparticles (NPs) for 24 h. A,
D control (0 mg/L); B, E: 1 mg/L of NPs; C, F: 10 mg/L of NPs. Ephyrae ingested NPs from 1 mg/L (B, E) up to 10 mg/L (C, F). Bars equal 1 mm

Table 1 Percentage of ephyrae containing blue stained NPs
(% ± standard error)

NP concentrations 0 day old 7 days old

0.1 mg/L 8.9 ± 1.8% 9.5 ± 1.7%

1mg/L 28.5 ± 1.6% 31.2 ± 2.0%

10 mg/L 99.7 ± 0.5% 99.4 ± 1.1%
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“marginal center” that controls swimming activity, and
lastly the presumptive photoreceptors, namely the ocelli
(Spangenberg et al. 1996). Moreover, after 72 h the for-
mation of new rhopalial cell types develop, including the
mechanoreceptor cells (Spangenberg 1991), with a key role
in prey capture and defense (Galliot et al. 2009). The
youngest ephyrae used in this study were 0 day, lacking
developed mechanoreceptors and a distinct rhopalium

organization. This may explain the difference in pulsing
behavior at 0 day ephyra age if compared to 1 week old
ephyrae. Our findings on the relation between ephyra age
and the rhopalial development are also supported by the
expression of Atohl genes, which control photo- and
mechanoreceptor development in Bilateria (Jarman and
Groves 2013). Such genes have been found in the rhopalia
of the cnidarian jellyfish (i.e., Podocoryne carnea and
Aurelia aurita), where they seem to be specifically
expressed in a high level at the first ephyrae stages (Seipel
et al. 2004; Brekhman et al. 2015), although they are also
expressed at the adult stage when the rhopalium nervous
system is not completed yet. Since a different pulsing
behavior was found in 0 and 7 day old ephyrae exposed to
NPs and considering that Atohl genes are highly expressed
at ephyra stage, further research on Atohl gene expression
in jellyfish of different ages will clarify if such genes may
be considered an important stage-specific transcription
factor in driving behavioral changes.

The neuro-sensory system of cnidarians is strongly
connected with pacemaker activity, such as modes or
swimming contractions (Nakanishi et al. 2009). It consists
of rhopalia, the motor nerve net (MNN) and the diffuse
nerve net (DNN; Nakanishi et al. 2010). MNN is formed by
large cells in the oral epithelium, that innervate swimming

Fig. 5 Alteration of the frequency of pulsations of Aurelia sp. ephyrae
of 0 day old and 7 days old after 24 h exposure at increasing NP
treatments (M ± SE, n= 3). Asterisk indicated a significant difference
between controls and 10 mg/L NP treated ephyrae of 0 day old age
(*p < 0.05). Ctr control

Fig. 6 Alteration of the Frequency of pulsations of Aurelia sp. ephyrae
of 0 day old and 7 days old- previously exposed to 10 mg/L of NPs-
after 24 h recovery in clean filtered seawater (FSW) (M ± SE, n= 3).
Ctr control

Fig. 3 Internalization of NPs in
0 day old jellyfish ephyrae.
Images are acquired with
holotomogram. NPs (blue color
representing the fluorescence
channel visible) are localized
inside the gelatinous body.
C shows a stitched image of the
tomogram (A) and fluorescent
(B) images. Bars equal 10 µm

Fig. 4 Immobility percentage of Aurelia sp. ephyrae of 0 day old and
7 days old after 24 h exposure at increasing NP treatments (M ± SE,
n= 3). Ctr control
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muscle fibers (Anderson and Schwab 1981). The rhopalium
forms regular electrical impulses through the MNN to elicit
jellyfish pulsations (Horridge 1956). All non-rhopalial
sensory cells and their neuronal processes are present in
the DNN. The latter can be found outside of the rhopalium,
being distributed in Aurelia sp.ectoderm. Its function is to
act as a sensory nerve net to elicit feeding: moreover, it can
also be used as an escape response behavior upon sensory
stimuli (Horridge 1956). After strobilation, DNN early
differentiation begins in newborn ephyrae, then the devel-
opment of the MNN and the pacemaker activity of the
rhopalium take place (Nakanishi et al. 2009). Hence, 0 day
old ephyrae do not have a fully differentiated DNN and
MNN and overall sensory cells. The detection of mechan-
ical disturbances (due to nanoparticles and microplastics) in
seawater may generate sensory responses, modulating
behavior, as reported in the larval swimming speed of
crustaceans and in 0 day old ephyrae pulse frequency
(Gambardella et al. 2015; Costa et al. 2020a, b). Likewise,
the NP presence and NP aggregation may affect the fre-
quency of pulsations, since undifferentiated sensory cells
unable to perceive mechano-sensory stimuli, may not
modulate and control pulse frequency. This may explain the
significant increase in the pulsation mode in 0 day old
ephyrae rather than in older ephyrae.

Internalization of NPs may alter energy metabolism,
inducing changes in behavior (Li et al.2014; Mattson et al.
2015). Thus, the ingestion of polystyrene NPs in fish larvae
disrupt glucose metabolism and cortisol, leading to changes
in locomotive activity (Brun et al. 2019). Although in this
study we did not investigate energy metabolism, we found
changes in behavior due to NP exposure. Since this expo-
sure induced a toxic effect in terms of EC50, further
investigations on metabolic responses in jellyfish ephyrae
may be addressed to better clarify the mechanisms that may
cause behavior impairment.

Significant changes in frequency of pulsations were
found in 0 day old ephyrae, although they were temporary,
as demonstrated by the recovery test. Similar results were
obtained by exposing ephyrae of the same age of those used
in this study to microplastics (Costa et al. 2020a). When
jellyfish were placed in clean sea water, no mechanical
stress occurred, likely due to the absence of NPs and their
agglomerates. The interaction between NPs and jellyfish
may have exerted pressure on undifferentiated sensory cells
of the young ephyrae, and as a consequence it may have
altered the electrical impulses. Although the pulsation fre-
quency resumed the same level seen in not exposed
ephyrae, damages at lower organization levels (i.e., mole-
cular, cellular) cannot be excluded, since NPs were ingested
and internalized in jellyfish ephyrae gelatinous body.
Recent findings suggest that intra-cellular uptake of nano-
sized polystyrene particles could increase hydrophobic

interactions leading to protein conformational changes in
fish (Auclair et al. 2017), also due to NP surface charge.
The latter is a key parameter of NP behavior and toxicity
(Corsi et al. 2020); polystyrene NPs used in the present
study showed a negative surface charge and a high hydro-
dynamic size (Gambardella et al. 2017), typical of all plain
polystyrene NPs with no functionalization (Corsi et al.
2020). Negatively charged polystyrene NPs could induced
lysosomal perturbations, oxidative stress, DNA damage,
detoxification dysfunction or triggering the innate immune
response in marine invertebrates (i.e., bivalves, echino-
derms; (Cole et al. 2020; Gonçalves et al. 2022). Thus, NP
negative charge and the high hydrodynamic size resulting in
NP aggregation overtime may contribute to temporarily
affect jellyfish behavior, rather than positive charged NPs,
although further studies are needed to confirm this
hypothesis.

Exposing the freshwater cnidarian H. attenuata to poly-
styrene NPs, Auclair et al. (2020) found that NPs are
responsible for decreasing biomass, inducing lipid perox-
idation, increasing polar lipid levels and forming lipid-like
liquid crystals at the intracellular level; however, after a
24 h depuration period in clean water, such biomarker levels
returned to control values. Accordingly, the behavioral
results reported in this study after the recovery test were
comparable to those obtained in unexposed jellyfish.
Nevertheless, it will be worth investigating biomarker levels
in ephyrae of different ages exposed to NPs and after a
recovery period in clean seawater to correlate behavioral
and enzymatic responses.

Jellyfish are formed of water, glycoproteins, and lipids
(Hubot et al. 2022). The latter characterize jellyfish mucus,
that contributes to jellyfish chemical defenses, besides
toxins and antimicrobial compounds (Ovchinnikova et al.
2006). Since jellyfish mucus is able to sequester polystyrene
microplastics and the presence of polystyrene NPs is
responsible for temporary changes in lipid contents in cni-
darians (Lengar et al. 2021), the investigation of biomarkers
specific for lipids, coupled with the analysis of behavioral
endpoints, should be further addressed in jellyfish in order
to clarify the potential toxicity derived from polystyrene
NPs after acute exposure.

These findings provide new evidence on NP uptake in
marine jellyfish ephyrae and the adverse consequences on
behavioral dysregulation, that may be due to NP behavior in
seawater. Further investigations at cellular and molecular
levels are required to better understand possible con-
sequences of NPs into jellyfish fitness and therefore in the
marine ecosystem.
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