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To date, much effort has been placed on quantifying plastic pollution and understanding
its negative environmental effects, arguably to the detriment of research and evaluation
of potential interventions. This has led to piecemeal progress in interventions to reduce
plastic pollution, which do not correspond to the pace of emissions. For substances that
are used on a global scale and identified as hazardous, there is a need to act before irre-
versible damage is done. For example, the history of dichlorodiphenyltrichloethane’s
(DDT) use has demonstrated that legacy chemicals with properties of persistence can still
be found in the environment despite being first prohibited 50 years ago. Despite the
growing evidence of harm, evidence to inform actions to abate plastic pollution lag
behind. In part, this is because of the multifaceted nature of plastic pollution and under-
standing the connections between social, economic and environmental dimensions are
complex. As such we highlight the utility of integrative systems approaches for addres-
sing such complex issues, which unites a diversity of stakeholders (including policy,
industry, academia and society), and provides a framework to identify to develop specific,
measurable and time-bound international policies on plastic pollution and meet the ambi-
tious yet necessary goals of the UN Plastic Treaty.

The continued and increasing quantities of plastic waste in managed systems and the environment
has gained widespread attention and demand for change among the public, policymakers and industry
[1,2]. Despite this awareness, use and generation of plastic waste continues to escalate [3]. Over the
past 20 years there has been a considerable body of research dedicated to understanding how plastic
pollution affects the natural world. Early studies focussed on determining the sources and distribution
of plastics in natural systems along with their environmental transport and fate [4-8] and they have
documented the ubiquitous presence from the deepest parts of our ocean to the highest mountain
peaks [9-11].

Despite decades of research, our understanding of the impact of plastic pollution on the natural
world remains incomplete. There is a general agreement among scientists that plastics have detrimen-
tal impacts on aquatic and terrestrial organisms and ecosystems [12-14], yet the specific mechanisms
of action are not always clear at a cellular level. Given the diversity of chemical (polymer, additives)
and physical (size, shape, topography) properties of plastics, concerns emerged about the ability of
plastics to act as vectors for other hazardous chemicals [15] or pathogens [16] that could adversely
Received: 1 August 2022 affect organisms upon exposure. Questions exist surrounding how chronic plastic exposure at sub-
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For any substance that is used on a global scale and identified as hazardous, there is a need to act before
irreversible damage is done to ecosystems, and lessons from other chemicals may apply to plastics. Consider
two examples that are not directly linked to the issues with plastics, but which have analogies to the plastic
pollution crisis. The application of dichlorodiphenyltrichloethane (DDT) is credited for preventing the spread
of malaria and saving millions of people’s lives. However, concerns of its overuse leading to negative ecological
effects became apparent as early as 1945 [22] just two years after industrial scale production started. However,
it was not until 1970 that DDT was first banned [23], following which evidence emerged indicating links
between DDT exposure and adverse human health effects [24,25]. In recent years perfluoroalkyl and poly-
fluoroalkyl substances (PFAS), a broad group of >9000 chemical compounds [26], have been shown to
adversely affect human health [27]. Due to the number of chemical substances, it is not pragmatic to perform
environmental risk assessments on each chemical [28], leaving a paucity of data and hindering the implemen-
tation of regulations, despite concerns over their potential toxicity emerging as early as the 1960s [29]. A
similar scenario is present with plastics, which encompass 10 000 monomers, additives and processing aids
used in the life cycle of a product, many of which have not been widely studied [30], leading to a dearth of
environmental risk data. It is clear that plastic products can bring societal benefit [31] and production con-
tinues at an insurmountable rate. The associated accumulation of end of life plastics has led to the breaching
of the planetary boundary for novel entities (such as micro- and nanoplastics) [32]; consequently business
simply cannot continue as usual. However, it is interesting to note that most of the benefits that are derived
from the use of plastics could be achieved without the accumulation of end of life plastics in the natural envir-
onment — in short the problem is not about not using plastics it is about starting to use them more respon-
sibly than we have to date.

In all three cases presented above, it is the mismanagement of the chemicals throughout their life cycle
which can lead to environmental problems. For the case of DDT, its environmental persistence has meant that
30 years after its widespread use was banned, it is still detectable in the environment [33]. A similar scenario is
occurring for PFAS. For plastics; to avoid their increasing pollution, which has the potential for global ramifica-
tions [32] appropriate action needs to occur now, but how best do we identify and prioritise these actions?

A shift in the research perspective regarding environmental safety from that of linear, sequential thinking (i.
e. problem formulation/characterization and then solving it if required), to a more precautionary and integrated
approach whereby solutions to potential problems are investigated earlier in hazard identification is required.
Plastic pollution has commonly been defined as a waste, resource, economic and a societal problem [34,35].
Framing the plastic pollution crisis from predominantly these viewpoints promotes different solutions. For
example, viewing plastic as a waste problem may encourage clean-up activities and lead to improvements in
waste management infrastructure and practises. On the other hand, plastic framed as a societal problem
prompts responses that raise awareness and reduce consumption of plastic (behavioural change, levies, bans)
[34,35]. Defining the plastic crisis from just one viewpoint neglects the interconnections between economic,
societal, and environmental dimensions of plastic pollution, and fails to make marked progress to developing
effective solutions to plastic pollution [36].

To date, local and national policies have largely focussed on banning specific, often single-use, items such as
plastic bags, straws and cotton swabs [37-39]. Legislation has been passed in a number of countries, including
the UK and US, to ban microplastics in rinse-off cosmetics, e.g. microbeads in facial scrubs [37,40]. The cam-
paign received widespread cross-sectoral support because the removal or substitution of microbeads was rela-
tively inexpensive and straightforward [41-43]. It is projected that the majority of plastics in the environment
are derived from mismanaged waste [44] and therefore banning these specific items may not be tackling the
root cause of the systemic issue of plastic pollution. The microbead ban has also received criticism as it only
tackles one application of the diverse and complex contaminant that is ‘microplastics’, which has been com-
pared with banning one specific use of a pesticide (i.e. in the home), while leaving the market saturated with
other diverse pesticides that require continued assessment for their environmental persistence and toxicity [45].
Opverall, the progression of these fractional measures does not correspond with the pace of plastic emissions.

Understanding the multifaceted nature of plastic pollution and the connections between social, economic
and environmental dimensions are complex. How the issue of plastic pollution is framed (i.e. as a waste,
resource, societal or economic problem) is largely dependent upon the views and goals of the stakeholders
involved. As such, it is vital to unite a diversity of stakeholders (i.e. industries, policymakers, academics, consu-
mers) and disciplines such as natural sciences, material design, social sciences, economics and humanities
(Figure 1). Holistically drawing together these separate areas brings a greater understanding of the
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Figure 1. A conceptual summary illustrating how society and stakeholders (i.e. industry, policy, academia) interact at
different levels, and the unity required between disciplines such as natural science, social science, economics and
humanities to ensure positive transformative change in the plastic life-cycle.

Arrows depict the flow of information, which is largely a two-way process.

opportunities available and the barriers for change. On the other hand, it undoubtedly adds a complexity, and
potentially competing interests, when evaluating solutions.

The adoption of an integrative systems approach provides a useful tool to cut through systemic complexity
and understand the dynamics and connections between processes, and as such provides an inclusive and consoli-
dative way to look at problem-solving [46]. Systems thinking has been used to better understand linkages
between air pollution and non-communicable disease [47], shipping-related pollution [48] and where there may
be leverage points for change [49]. More recently, this approach has been used to identify priority areas across
different plastic life-cycle stages, e.g. within the product design, production, use and end-of-life [50] in order to
achieve a circular economy, and facilitate the development of regulations [51]. System approaches provide a
framework for the convergence and exploration of scenarios to reduce plastic pollution from waste, resource, eco-
nomic and societal perspectives, to inform where tangible and effective actions lie across the life-cycle of plastic.

A life-cycle view is central to the recent resolution to establish an international legally binding treaty to end
plastic pollution by 2024 [20,52]. With limited time and resources, and varying political willingness of those
United Nations Member States, establishing which actions may yield the greatest reduction in plastic pollution
are required. Utilising an integrative system approach will facilitate with the identification the leverage points
where transformative changes can be implemented to cap virgin plastic production [19] and prevent leakage
into the environment [20,53] in order to achieve the ambitious yet necessary goals of the UN Plastic Treaty [52].

In summary, a great deal of effort has been placed on understanding the negative effects of plastic pollution
in ecosystems, to the detriment of the early development and evaluation of interventions. Thinking to date has
predominantly been siloed, but the adoption of integrative systems approaches that consider the interrelations
between problems and solutions from a diversity of disciplines (e.g. material design, social sciences, economics
and humanities, industry and policy in addition to the natural sciences) are required to change the life cycle of
plastic use from linear to a circular economy, and to develop specific, collaborative, measurable and time-bound
global interventions on plastic pollution.
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