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1 Laboratoire d’Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093,

Sorbonne Université, Villefranche sur Mer, France, 2 Laboratoire d’Océanographie Microbienne, UMR 7621,
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Abstract

Microfibers, whether synthetic or natural, have increased dramatically in the environment,

becoming the most common type of particles in the ocean, and exposing aquatic organisms

to multiple negative impacts. Using an approach combining morphology (scanning electron

microscopy-SEM) and molecular taxonomy (High-Throughput DNA Sequencing- HTS), we

investigated the bacterial composition from floating microfibers (MFs) collected in the north-

western Mediterranean Sea. The average number of bacteria in 100 μm2 on the surface of a

fiber is 8 ± 5.9 cells; by extrapolating it to a whole fiber, this represents 2663 ± 1981 bacte-

ria/fiber. Attached bacterial communities were dominated by Alteromonadales, Rhodobac-

terales, and Vibrionales, including the potentially human/animal pathogen Vibrio

parahaemolyticus. This study reveals a high rate of bacterial colonization on MFs, and

shows that these particles can host numerous bacterial species, including putative patho-

gens. Even if we cannot confirm its pathogenicity based only on the taxonomy, this is the

first description of such pathogenic Vibrio living attached to MFs in the Mediterranean Sea.

The identification of MFs colonizers is valuable in assessing health risks, as their presence

can be a threat to bathing and seafood consumption. Considering that MFs can serve as

vector for potentially pathogenic microorganisms and other pollutants throughout the ocean,

this type of pollution can have both ecological and economic consequences.

1. Introduction

Plastics are synthetic organic polymers whose mass production began in the 1950s, and has

grown from 1.5 million tons/year to 359 million tons in 2018 [1], with cumulative global pro-

duction expected to triple by 2050 to 33 billion tons [2]. Due to their versatility, low produc-

tion cost, and resistance to degradation, plastic became a key product in our society; however,

its low degradation rate has become an environmental threat [3, 4]. Plastics are the most abun-

dant contributors to marine litter (60–90%), and in their majority they consist of microplastics
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(< 5 mm in size) [5, 6]. It is currently estimated that 4.8 to 12.7 Mt of plastic enter the ocean

each year [7], with floating plastic concentrations between 1–5 millimeters accounting for 24.4

trillion items, weighing between 82,000 and 578,000 tons [8]. Despite current strategies to

reduce plastic pollution, the projected growth in plastic production, and thus plastic waste,

exceeds efforts to mitigate plastic pollution [9].

The textile industry is of great economic value where more than half of the world’s produc-

tion is based on synthetic fibers, with polyester, polyamide, acrylic and polyolefin being the

most common types, the rest of the production comes from natural fibers with cotton being

the most important [10]. Synthetic microfibers are a ubiquitous class of microplastics that can

have several origins: they come from household laundry textiles that enter the oceans via

urban wastewater treatment plants (WWTPs) or rivers that carry plastic waste from inland

[11, 12], through atmospheric deposition or aerosols [13–15], as well as derived from fishing

activities [16].

Microfiber pollution is widespread in coastal and offshore surface waters in all ocean basins;

synthetic fibers account for up to 50% of fibrous items; the remainder are natural fibers such

as cotton and wool [17–19]. Whether synthetic or natural polymers, their release into the envi-

ronment has become an emerging pollution concern because organisms are exposed to this

mixture on a daily basis, and little is known about the degradation of MFs in the marine envi-

ronment and how it can pose a potential long-term risk to ecosystems and human health [20,

21]. In addition, synthetic microfibers are now the most common type of anthropogenic parti-

cles in the oceans, in some cases accounting for 80–90% of the number of microplastics, with

higher concentrations than granules or fragments [22]. Their release into the environment

poses a threat to marine ecosystems, as they are the most common type of ingested microplas-

tics [23, 24]. They may be potentially harmful physically and chemically for aquatic environ-

ments or the food chain through the release of additives and dyes, with unknown

consequences, including for humans [25–27].

Once at the sea, like other microplastics, the fibrous material can be rapidly colonized by

microorganisms, such as bacteria or benthic microalgae [28]. The establishment of a biofilm

on microplastics, which can appear and smell like food [29] may enhance their ingestion. Sev-

eral studies have shown that bacterial communities inhabiting plastic on the surface of the

oceans differ significantly from bacterial communities in the surrounding water [30–33]. Plas-

tics can also become vectors for potentially dangerous or pathogenic microorganisms, and

their impact on marine environments and human health is the subject of numerous studies

[34–37].

The Mediterranean is a semi-enclosed sea with a densely populated coastline and high eco-

nomic activity, tourism, and maritime traffic that result in a significant land-based plastic pol-

lution, which represents over 80% of the marine litter [6, 38]. This sea, although it represents

only 0.8% of the world’s marine waters, was predicted by global models to account for nearly

7% of microplastic pollution in the global ocean [6]. The Mediterranean also hosts a high level

of biodiversity with 17,000 marine species, 28% of which are endemic [39], that are likely to be

affected by the presence of plastic debris in all marine compartments [40].

Here we examined the interaction between MFs and the microbial community of the Medi-

terranean Sea, with focus on Vibrionales. We also discussed the potential role of these fibrous

particles, now ubiquitous in the marine environment, as vectors for the spread of potential

pathogens such as Vibrio parahaemolyticus. This study is part of a larger survey where general

information on the abundance of MFs, as well as their chemical composition in the Mediterra-

nean Sea is published in Pedrotti and colleagues [19]; they found, in the same samples we used

to study the organisms attached to MFs, that 14–50% of MFs are synthetic fibers. The term

MFs used in this study therefore refers to all types of fibers (synthetic or natural).
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2. Material and methods

2.1 Sampling collection

Samples were collected aboard the research vessel The Alchemy, an 11 m long sailing ship, in

the northwestern Mediterranean Sea, Liguria Sea, during the ECOSEASTEM cruise (February

—October 2014) [19]. For this experiment, a total of seven sites were sampled in spring (6–8

May) and summer (5–8 August). Six sites were located along the coastal zone from the Var

River, from in front the city of Nice (where the Haliotis waste water treatment plant—WWTP

—is located) to the entrance of the bay of Villefranche-sur-mer (Point B). Another sampling

station, characterized by low anthropogenic contamination, was located 70 km off the coast

(DYFAMED station). Samples were also collected from the urban and treated water of the

Nice Haliotis WWTP (Fig 1).

For in situ samples, fifty liters of surface seawater were collected with a stainless-steel bucket

in each location and filtered through a 20 μm pore sized stainless-steel sieve. Samples were

then resuspended in 200 mL of 0.2 μm filtered seawater. A quarter of each sample was used to

investigate the microbial diversity associated to MFs by DNA analysis, and another quarter

Fig 1. Map of the northwestern Mediterranean Sea where seasonal sampling of MFs and seawater was carried out

in the coastal area between Nice and Monaco, as well as in the offshore Dyfamed station, and the Haliotis waste

water treatment plant. This map was created at MATLAB software by using the M_Map package.

https://doi.org/10.1371/journal.pone.0275284.g001
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was destined for image analysis of MFs-attached biota. The remaining subsamples were dedi-

cated to the quantification and characterization of MFs by Fourier transform infrared spec-

troscopy (ATR-FTIR) in a larger experiment, provided in Pedrotti and colleagues [19].

In parallel, 2 L of surface seawater were sampled to analyze the free-living microbial com-

munity. For sampling in the WWTP, three replicates of 2 L of urban and treated wastewater

were also collected during the two seasons. All water samples were collected in amber bottles

and fixed in 2% formaldehyde.

To minimize contamination, a stainless-steel bucket, held by sheathed steel wire, was used

for collecting surface water and, at each sampling point, it was rinsed three times with distilled

water. Sampling was carried by placing the bucket on the surface of the water, so that only the

top 10 cm was sampled. To avoid cross-contamination, in both in situ sampling and laborator-

ial manipulation, all material was previously washed with alkaline and acidic detergents, and

rinsed three times before each handling with 0.2 μm milli-Q microfiltered water.

2.2 Scanning electron microscopy (SEM) & image analysis

SEM images were obtained to quantify and evaluate the morphology of microbial organisms

on MFs. Seawater was filtered through 0.2μm-pore-size Anodisc membrane (aluminumoxide,

47mm). The filters were dehydrated with alcohol (1 rinsing for 10 min at 70%, rinsing 10 min

at 96% and 3 rinses 10 minutes with absolute ethanol) and fixed under a chemical hood with

Hexamethyldislazan (HDMS). Analysis was performed with a JEOL6700F field emission gun

SEM equipped with a cryo-fracture platinum Gryan Alto 2500 and a YAG Autrata backscat-

tered electron detector (X25-X20 000). Prior the analyzes, the fiber length was measured using

a stereomicroscope (Zeiss Discovery V12 SZX10) and ImageJ v.1.5 software, and benchmarks

were sheared on the filter to first identify the MFs to allow their identification under a scan-

ning microscope. The number of bacteria attached to the fibers was calculated based on the

SEM images. For this, bacteria were counted in several fields of 30 MFs using ImageJ v.1.5 soft-

ware. In order to report the bacterial abundance on the surface of a fiber, we considered it as a

cylinder without the spherical ends. Considering the median length (601 μm) and the median

diameter (18μm) of the fibers analyzed, this represented an average scanned area of

33986 μm2.

2.3 Samples processing prior DNA extraction

In the laboratory, the resuspended sieved sample represented the community associated with

the MFs (MF fraction). To study the microbial diversity of free-living community, the seawater

was filtered through 0.2μm-pore-size filters (47 mm diameter, polycarbonate, Nuclepore). For

wastewater, 100 ml of inlet samples and 300 ml of outlet samples were resuspended through

the 20μm sieve, and filtered through 0.2μm-pore-size filters (47 mm diameter, polycarbonate,

Nuclepore). Filters were stored at -80˚C until DNA extraction.

2.4 DNA extraction, PCR and high-throughput sequencing

DNA extraction was performed using a thermo-saline lysis protocol [41]. The partial 16S

rRNA gene was amplified by PCR using primers 357F and 907R, which amplify the V3-V5

hypervariable regions. The molecular size and the purity of the DNA extracts were analyzed by

agarose gel electrophoresis (1%). PCRs were carried out in 50μl reactions using 0.5–5 μl of

DNA template, 2 mM MgCl2, 0.25 μM of each primer (forward and reverse), 0.25 mM dNTP

and 1.25 U Taq polymerase, completed with ultrapure water. Negative controls containing

ultrapure water instead of DNA template were performed at all PCR steps. Amplifications
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were confirmed by agarose gel electrophoresis run. DNA sequencing was carried out with the

Illumina MiSeq by Research and Testing Laboratory (Lubbock, Texas).

2.5 Sequence data and diversity analysis

Paired-ends raw reads (2 x 250) were merged, quality-filtered and assigned to taxa after prim-

ers trimming, sequence clustering and chimera checking using the Mothur pipelines [42].

Clusters were assigned with the Silva 128 16S rRNA database [43] and clusters that did not

belong to Bacteria kingdom were removed, as well as chloroplast and mitochondrial

sequences. Operational Taxonomic Units (OTUs) were defined as clusters sharing 97% of

sequence identity. The taxonomy assignments were completed using the SILVA v.128 database

(https://www.arb-silva.de/documentation/release-128/). Bacterial sequences were randomly

resampled in the OTU file to enable comparison between samples, by normalizing the number

of sequences between samples to the sample with the fewest sequences (n = 468) using Mac-

Qiime 1.9.0 (single_rarefaction.py). All further analyses were performed on the randomly

resampled OTU table.

OTUs richness was estimated by a non-parametric estimator of Chao1. The Jaccard dissim-

ilarity matrix was used to visualize patterns in the community composition [44] by producing

a Principal Coordinates Analysis (PcoA) plot among all samples [45]. Statistical analyses were

done with the vegan package [46] in R studio 1.1.456 (R Development Core Team). The ggplot2
package [47] was used in R studio to build boxplots with number of OTUs between MFs and

seawater samples, as well as the PCoA plots.

3. Result and discussion

3.1 Morphological analysis of microfibers and their associated organisms

Optical microscopy of MFs showed a variety of MFs in all samples, in different sizes, thick-

nesses and colors, with an average length of 939 ± 1011 (size range from 52 to 6018 μm (Figs

2A and 2B, S1). SEM analysis showed that many MFs presented signs of degradation, includ-

ing cracks and pitting. Bacterial cells were the most commonly associated organisms with the

MFs. Although we also have observed many diatoms, it was not possible to estimate their

abundance on MFs with the magnifications we used to capture the images, due the large size

range of this group. Extracellular Polymeric Substances (EPS) were regularly observed (Fig

2C–2F). The average number of bacteria on the surface of a fiber was 8 ± 5.9 cells 100μm-2;

extrapolating it to an entire fiber, this represents 2663 ± 1981 bacteria per fiber, revealing a

strong bacterial presence on MFs. To date, only a few studies have quantified the surface area

colonized by bacteria on microplastics in the marine environment [48, 49]. Our counts,

although on different types of MFs and not only microplastics, yielded results in the same

range as the above-mentioned studies in the Mediterranean, respectively 0.5 and 4.4 cells

100μm-2.

3.2 Description of microfibers-associated bacteria

We found a total of 195 bacterial OTUs belonging to twelve phyla and one unclassified bacte-

rium. PCoA analysis showed clear distinctions between the bacterial community structure

attached to MFs in comparison to seawater and the WWTP samples (Fig 3). WWTP samples

were dominated by Cloacibacterium normanense (Bacteroidetes; Flavobacteriia) and Arcobac-
ter cryaerophilus (Proteobacteria; Epsilonproteobacteria), both representing less than 0.01% of

bacteria we found attached to MFs or seawater samples. Previous studies showed significant

differences between bacterial assemblages on microplastics, borosilicate spheres, and bacterial
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Fig 2. Optical microscopy of floating fibers sampled at the Mediterranean Sea (A, B), and Scanning Electron

Microscopy (SEM) images of their attached bacteria, with elongated and rounded cells, as well as Extracellular

Polymeric Substances (EPS) (C-F).

https://doi.org/10.1371/journal.pone.0275284.g002

Fig 3. Principal coordinate analysis (PCoA) plot showing dissimilarities among the bacterial community

composition attached to microfibers from summer (MF_SU) and spring (MF_SP) seasons, the free-living bacteria

from the Seawater and from the Haliotis Waste Water Treatment Plant (WWTP). Samples were grouped based on

Jaccard distance matrix.

https://doi.org/10.1371/journal.pone.0275284.g003
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communities in WWTP effluent water [50]. The presence of freshwater in WWTP, in opposi-

tion of the salt water found in coastal regions, could be the main factor distinguishing these

populations. For that reason, we choose to exclude WWTP samples from further analysis as

the description of WWTP bacteria was not the main goal of the present study.

The OTUs richness among MFs and seawater samples was significantly different (Kruskal-

Wallis, p< 0.01), being higher on MFs (Fig 4). Free-living bacterial community was domi-

nated by (Alpha) Proteobacteria, Bacteroidetes, and unclassified Cyanobacteria, divided into

eight OTUs that together represented 84% of free-living prokaryotes, all of them being fre-

quent in all seawater samples. Candidatus Pelagibacter was the most abundant species (relative

abundance of 28%). This is a ubiquitous bacteria member of the SAR11 clade, and indeed is

one of the most abundant microbial plankton cells [51].

MFs-attached bacteria showed a different community composition, dominated by eight

(Gamma or Alpha) Proteobacteria OTUs that represented 80% of the prokaryotes associated

to MFs. Alteromonas sp. (Gammaproteobacteria) was the most abundant OTU (48% of reads),

frequent in all MFs samples. This taxon is commonly found as the most abundant OTU in the

marine plastisphere worldwide [45]. In addition, marine Alteromonas spp exhibit algicidal

activity, which may attack cells and kill or lyse nearby microalgal cells [51]. In our study area,

the putative pathogen Vibrio parahaemolyticus was the second most abundant OTU (7%)

Fig 4. Number of observed OTUs per group of microfibers from spring (MFSP) and summer (MFSU) seasons, as

well as from the Seawater, obtained from 16S amplicon sequence library, with significant difference between

microfibers and seawater samples (Kruskal-Wallis, p< .01).

https://doi.org/10.1371/journal.pone.0275284.g004
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associated to MFs, with frequency of occurrence (FO) of 71% in MFs samples. Another Vibrio
sp. was also highly frequent (FO 86%), even with low abundance (4.4%).

Comparison between summer and spring seasons (Fig 5) showed that four individual

OTUs contributed to 68% of the dissimilarity among the MFs samples, with Alteromonas sp.

dominating in the spring, while during the summer Pseudoalteromonas sp. and Vibrio para-
haemolyticus were more representative. Considering the relevance of this taxon, we discuss the

Vibrio spp. in a separate section hereafter. Alteromonas sp. was previously identified as an

organic particle-attached group [52], whereas Pseudoalteromonas sp. is frequently associated

to marine algae [53]. These associations support the fact that the plastisphere may be a self-suf-

ficient ecosystem [54], with many ecological relations among its members that include symbi-

onts, saprotrophs and parasites [55]. The communities we have identified living on MFs in the

Mediterranean Sea form distinct groups in relation to the sampling seasons (summer and

spring) (Fig 4). This is in accordance to what has been demonstrated in other regions [56–58]

to plastisphere organisms, as they are highly dependent on environmental factors [28].

Other groups of bacteria found attached to MFs belong to the genera Marinobacter (FO

71%), Pseudomonas (FO 50%), Acidovorax and Clostridium (FO 43% each), Acinetobacter and

Comamonas (FO 29% each), some of them described as able of biodegrading various types of

polymers [59]. For example, a Pseudomonas strain has been shown to have enzymes such as

monooxygenase that play a central role in polyethylene degradation [60]. The richness of

OTUs estimated by Chao 1 shows that a very high diversity of bacteria exists on MFs,

highlighting a vast and largely unknown functional potential. Although our data indicate the

presence of these taxa associated to MFs in the Mediterranean, they do not allow us to assess

the functionality of their genes. The identification of mechanisms involved on pathogenicity

and biodegradation of synthetic polymers is therefore a priority issue [61].

Many bacteria found associated to MFs in the Mediterranean Sea were previously identified

as potential animal and/or human pathogens, such as Tenacibaculum, Vibrio and Pseudomo-
nas species [62]. These groups were also described as part of the marine plastisphere in the

North/Baltic Seas [33, 63, 64], South Atlantic [65] and North Pacific [31] oceans. As

Fig 5. Bar chart showing taxonomic composition and dominance of a relatively small number of abundant OTUs,

for seawater (SW) and floating microfibers (MF) in the Mediterranean Sea. Similarities between microfibers

collected during spring and summer seasons are detailed. For more clarity, OTUs representing less than 1% or

unclassified at the class level are grouped in the Other/Unknown series.

https://doi.org/10.1371/journal.pone.0275284.g005
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mentioned above, the presence of Vibrio has been confirmed in various sampled fibers recov-

ered in your sampling, which included both synthetic and natural fibers. Although our results

are not exclusively related to synthetic fibers, they do reinforce the role of plastics, including

synthetic microfibers, in harboring potentially harmful organisms.

3.3 Vibrio spp. associated to microfibers in the Mediterranean Sea

To date, only a few studies have reported bacteria that could be a putative human pathogen on

MFs or other types of microplastics in Mediterranean waters [49, 54]. This study is the first to

describe V. parahaemolyticus on floating MFs at the region. Members of the genus Vibrio were

also found on plastic debris at a Mediterranean beach (Calvi, Corsica) with the pathogenic V.

splendidus accounting for up to 70% of the total reads [54]. Other studies detected V. parahae-
molyticus attached to microplastics, one in the South Atlantic Ocean [65], and another in the

North Sea/Baltic Sea [35], including polyethylene fibers, polyethylene films and polypropylene

fragments. Kirstein and colleagues [35] also identified this species in the surrounding water

where microplastics were sampled, thus suggesting that the seawater could be a potential reser-

voir of Vibrio species. Recently, Kesy et al. [64] showed that the colonization of plastics by Vib-
rio sp. was observed within the first hour of exposure of these materials in situ, highlighting

that Vibrio sp. are amongst the very first colonizers on plastics.

In our survey, this putative pathogen represented around 6% of the total community in the

MFs fraction, mostly present during the summer, and it counted for 28% of reads in a single

sample from a coastal station; this taxon was not found in the seawater samples from the off-

shore Dyfamed station, and it was found in a very low abundance attached to the MFs (0.01%)

from Dyfamed, emphasizing that the risk of contamination may be higher in areas of high

anthropogenic impact. In the Baltic Sea, a positive correlation was found between Vibrio abun-

dances and the presence of cities with more than 100,000 inhabitants [64]. Vibrio parahaemo-
lyticus can potentially infect humans when ingesting raw or partially cooked shellfish [66] This

is noteworthy since Vibrio spp are rarely found in concentrations that can account for more

than 1% of the community attached to plastics [67].

Other potentially pathogenic Vibrio species not related to human diseases were observed on

microplastics in the Mediterranean Sea, such as V. anguillarum, V. harveyi, V. pectinicida, V.

xiamenensis but again as a low percentage of the community (< 0.1%) [48]. In our samples,

Enterovibrio calviensis (first described in the Mediterranean as Vibrio sp.) was frequent in all

MFs samples, in low abundances, but this is a species resistant to antibiotics (lincomycin, oxa-

cillin and spectinomycin), and a facultative anaerobe, able to reduce nitrate to nitrite [68].

Vibrionales are generally known to express antagonistic activities, being the most prolific pro-

ducers of inhibiting materials but also the most resistant to them [69]. In addition, some Vibrio
species are capable of degrading toxic polycyclic aromatic hydrocarbons (PAHs] in polluted

marine sediments [70]. The evaluation of the potential virulence of environmental strains of

Vibrio parahaemolyticus has shown that they have the ability to regulate newly acquired viru-

lence factors, e.g. in response to the temperature, but the ability to adapt to a human host envi-

ronment has not yet been demonstrated [71]. Although abundant in the Mediterranean Sea

and occurring in many areas in the Baltic Sea, metaproteomic analyses have shown that, in the

Vibrionaceae family, proteins related to virulence processes are not very active [54, 72].

Furthermore, while it is now established that there is a specific microbiome growing on

plastics that differs from the seawater (free-living and associated with organic particles), there

is less evidence regarding the differences between natural and synthetic substrates [67]. A

study of three marine ecosystems under various environmental conditions found that a large

proportion of the OTUs present on plastics were absent in non-plastic particles and in the
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seawater [45]. Regarding Vibrio sp, they are known to be associated with various natural sub-

strates such as wood, cellulose or glass, and their abundance appears to be low on plastic debris

compared to natural ones [31, 67]. Nevertheless, in our study, we were able to confirm the

presence of Vibrio in the MFs, although it cannot be established directly on synthetic or natu-

ral fibers. A recent meta-analysis of several environments shows that the variety of potentially

pathogenic species found on microplastics is comparable to natural particles [37]. Many ques-

tions remain open as to whether, rather than a selection of distinct microbial colonizers, per-

sistent plastic debris could lead to sustain selection of biofilms, thereby increasing the risk of

pathogen transport and disease occurrence [37].

3.4 Impacts of microfibers and their attached bacteria in the

Mediterranean Sea

In a global fiber study covering surface waters of six ocean basins, the Mediterranean Sea had

the highest concentrations (median of 4.2 fibers L-1) [18]. The median concentration of syn-

thetic microfibers in the western basin was even higher (10.7 fibers L-1), as the characterization

by ATR-FT-IR revealed that they represent 14–50% of the raw materials [19]. This high con-

centration of fibers could be related to the higher density of Mediterranean waters (generally

>1.026 g cm-3), which allows fibers such as polyamides, commonly used in the textile industry

and fishing (density between 1.02 and 1.15 g cm-3), to remain in the upper layers in higher pro-

portions [15], when compared to other seas [73, 74]. Another explanation is related to their

shape, as vertical advection velocities are lower for fibrous microplastics than for sheets and

other shapes [75], which may contribute to a longer residence time for these fibrous materials,

favoring their transport as potential vectors for organisms, including putative pathogens.

Studies have shown that temperature and salinity affect Vibrio species, in particular temper-

ature has a significant correlation with the increase of Vibrio spp. [33, 76, 77]. In the Baltic Sea,

gradual warming of the water favored the appearance of potentially pathogenic Vibrio and the

emergence of infections [78]. Higher temperature was also positively correlated with the den-

sity of V. parahaemolyticus in oysters [66]. A recent study showed that the increase of seawater

temperature has an important influence on the adhesion properties of free-living V. parahae-
molyticus to plastic, with all analyzed factors being transiently expressed in 27˚C and even

more upregulated at 31˚C, emphasizing the role of climate change in the spread of this patho-

genic bacteria [79]. In the Thau Lagoon (Gulf of Lyon), episodes of massive oyster mortality

coinciding with single or double infections involving mainly OsHV-I and Vibrio splendidus
have been observed when seawater temperature is above 24˚C [80].

Indeed, the temperature during the summer cruise ranged from 25.2 to 26.5˚C. During this

season, although low runoff may decrease plastic transport from freshwater systems [81], the

population double in this area as this is the touristic season. The western coasts of the Mediter-

ranean are among the most densely populated areas, with population size expected to increase

nearly twofold over the next decade [38]. Much of the world’s plastic waste enters the oceans

at heavily populated coastal sites and near wastewater drainage systems. While the increased

spread of potentially pathogenic bacteria on floating plastics is a real threat to low-income

countries [82], the presence of putative pathogenic Vibrio in a highly persistent (or ubiquitous)

anthropogenic particle (that can be transported long distances) in the Mediterranean Sea is

also becoming a major environmental concern.

4. Final remarks

Our study shows clear distinctions between bacterial communities on MFs compared to the

free-living bacteria inhabiting surface waters in the Mediterranean Sea. It highlights a strong
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colonization of MFs by microorganisms and reports the first occurrence of the pathogenic

Vibrio parahaemolyticus attached to floating MFs, including synthetic ones, in surface waters

of Northwestern Mediterranean Sea, especially during the summer. We have shown that

microfibers, both natural and synthetic, have the ability to host bacterial species, including

potential pathogens, although the comparison is not sufficient to draw conclusions on the

enrichment of certain bacterial species on microplastics.

This study raises the question of whether the increasing amount of persistent plastic waste

in the environment may influence the dynamics of various hitchhikers offering greater trans-

port opportunities, thus leading to an increased risk of contamination compared to other

short-lived natural particles, such as wood or sediments. Considering that synthetic fibers can

serve as a vector for potentially pathogenic microorganisms and other pollutants in the ocean,

due to their longevity, this type of pollution may have ecological and economic consequences.

These results on the characteristics of microbial assemblages are valuable for future assess-

ments of the health risks associated with plastic pollution, as their presence may pose a threat

to swimming and seafood consumption.

The Mediterranean is under constant anthropogenic pressure regarding pollution, as well

as the consequences of climate change exceeding global trends for most variables, with waters

warming faster than the rest of the ocean, especially during the summer months [83]. These

changing conditions can lead to shifts in marine microbial community structure, including

particle colonizers in areas with high levels of plastic pollution. Further studies are needed to

target genes associated with virulence to prevent the spread of diseases. Human discharges of

chemicals and plastics into continents and oceans have reached a critical threshold, and plastic

pollution meets the criteria for planetary boundary threats [84].
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