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22.1  Introduction

Polymers are increasingly drawing the attention from national and international chemical regulatory agencies 
regarding their environmental safety. Polymers were assessed for inclusion in the regulations by regulatory agen-
cies in the 1990s, prominently by the United States of America Environmental Protection Agency (USEPA). The 
USEPA developed a framework for environmental assessment of polymers under the U.S. Toxic Substances 
Control Act (TSCA) [1]. Polymers have been regarded to be of low environmental concern since they frequently 
have high molecular weights (MW), which limits their bioavailability, as well as their toxicity [2]. They have hence 
been subject to exemption or reduced regulatory requirements globally (e.g. currently exempt in the registration, 
evaluation, authorization and restriction of chemicals [REACH] regulation), however, this is expected to be lifted 
in the coming years [3].

Polymers are produced in millions of tons annually worldwide and are used in a wide range of different prod-
ucts from plastics, to water soluble consumer products, to functional pharmaceutical and nanomaterials. They are 
large macromolecules composed of repeating subunits with MWs typically ranging from the 100s to several 1000s 
or even millions of Daltons. The size limits their ability to pass membranes according to the Lipinski rule and 
therefore also their toxicity as realized by the regulatory agencies. Hence, polymers have remained understudied 
with regards to their environmental properties and potential hazard profile during the past decades [3].

Quantitative structure–activity relationships (QSARs) are an integral part of most chemical legislation and 
agencies work. In order to address the increased regulatory scrutiny of polymers, QSARs need to be revised and/
or new models developed. There is generally limited property and toxicity data publicly available for most poly-
mers. The availability of environmental toxicological QSARs are also limited. The most comprehensive data col-
lection and attempt to develop environmental toxicity quantitative structure–toxicity relationships (QSTRs) for 
polymers was conducted by the USEPA in the mid-1990s [1]. More recently, Nolte et al. [4] attempted to develop 
QSARs for algae toxicity for a diverse group of polymers (n = 43). The USEPA in 1996 [1] found a set of relevant 
descriptors and published the data, and Nolte et al. [4] confirmed the findings that charge density (%a-N) was a 
strong descriptor of algae toxicity and developed an acute algae toxicity QSAR of cationic polymers:
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The USEPA in 2013  [5] also developed models based on the same dataset. They found that with regards to 
aquatic toxicity, charge density (%a-N) was the only quantitative descriptor, and that at high %a-N (above 3.5% for 
algae and fish and 4.3% for daphnids), the toxicity and charge density no longer correlate but plateaued and 
remained essentially constant. The backbone also influence polymer toxicity, with the rank toxicity potency being: 
Carbon-based backbone   Si-backbone = natural backbone. They have developed acute structure–activity rela-
tionships (SARs) as evident in the report below showing the most conservative acute SARs for carbon-based 
backbone cationic polymers with a %a-N   3.5:
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The models by the USEPA [1] and Nolte et al. [4] are based on univariate regression models. In this chapter, we 
test and improve the QSAR models for cationic polymers, the class of polymers of greatest environmental con-
cern, by applying multivariate methods and interspecies analysis to the available data employing the guidelines of 
Organization for Economic Co-operation and Development (OECD) [6] for QSAR model development.

22.2  Materials and Methods

22.2.1  Polymers

Polymers are a diverse group of macromolecules. They can have many different sizes, charges, backbone, 
functionalities, etc. [3]. In this analysis, we focus on cationic polymers as these have been identified as being of 
potential environmental concern [1]. Below is a depiction of a commonly used cationic polymer, polydiallyldi-
methylammonium chloride (polyDADMAC) and also known as polyquaterium 6 (PQ6), CAS# 26062-79-3. PQ6 is 
widely used as a flocculant in waste water treatment where its sorptive properties, due to its charge density, enable 
the capture of particles and removes them from the water phase (Figure 22.1).

Due to its use within wastewater treatment, PQ6 is the most studied polyquaterium material. A recent review 
by Pecquet et  al.  [7] collected and critically evaluated the available polymers relevant to household cleaning, 
including PQ6 [7]. PQ6 is the most well-described polyquaterium cationic polymer but as evident from the distri-
bution of the toxicity values below in Figure 22.2, there are large variations in toxicity among species, indicating 
potentially both different sensitivities and uncertainties in the tests as large charged and sorptive materials such 
as PQ6 are difficult to test.

PQ6 has been assessed by the Canadian authorities and has been found to be inherently toxic to aquatic organ-
isms based on a Ceriodaphnia dubia acute 48 h LC50 value of 0.32 mg l−1. The annual PQ6 usage in Canada is 
>1000 tons year−1 [8]. Other polymers, including cationic polymers, are much less researched as Pecquet et al. [7] 

documented. We found that in a SciFinder analysis with the query combination: 
cationic + polymer + aquatic + toxicity, resulted in only seven references.

22.2.2  Dataset

As evident from the section above, limited publicly available environmental toxic-
ity data for polymers exists, which both impairs and highlights the need for 
QSARs for polymers. The USEPA dataset on polymers in the 1990s [1] identified 
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Figure 22.1  PQ6 structure.
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relevant toxicological descriptors for modeling purposes – but did not develop robust models. The dataset is 
confidential and therefore blinded, but information is provided pertaining to key properties and measured tox-
icities in the published report [1]. This is the most comprehensive publicly available dataset for cationic poly-
mers. Table  22.1 lists cationic polymers, properties, and aquatic toxicity data from the USEPA report from 
1996 [1].

The experimental toxicity data of a series of cationic polymers against three different species Daphnia magna, 
fish, and green algae were collected [1]. The dataset consists of three types of polymers namely carbon-based 
backbone, silicon-based backbone, and natural-based backbone. The acute toxicity was measured in fish after 
a 96 h exposure, in D. magna after 48 h, and in green algae after 96 h. All acute toxicity values were expressed in 
EC50 (mg l−1). In addition, chronic toxicity to green algae was also measured and was expressed as the chronic 
value (ChV, or geometric mean of the no-observed-effect concentration and lowest-observed-effect-
concentration). In the dataset, many polymers had multiple toxicity data against the same taxonomic group. To 
consider a specific polymer once in the modeling study for a particular endpoint, we have averaged the toxicity 
data for the specific polymer against same species. For in silico modeling purpose, the EC50 values were trans-
formed into molar scale (dividing the EC50 value with the reported average molecular weight (avMW) of the 
individual polymers) followed by conversion to the negative logarithmic form, i.e. pEC50 (EC50 in molar). Note 
that pEC50 values are directly proportional to the toxicity. Few polymers were removed from the modeling study 
due to absence of data related to associated properties. Therefore, for modeling purpose, the number of poly-
mers considered with toxicity data to Fish (96 h), D. magna (48 h), green algae (96 h), and chronic green algae 
were 38, 20, 17, and 16, respectively.

22.2.3  Descriptor Calculation

Polymers are class 2 substances as they have variable compositions. The chemistry of polymers focuses on the 
monomeric units a polymer is composed of and their mole percentages, MW distributions including the avMW 
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Figure 22.2  Distribution of PQ6 aquatic toxicities.
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Table 22.1  Blinded cationic polymer dataset [1].

Comp # %a- N AvMW (Da) MW < 1000 Da% MW < 500 Da%
Cat 
Pos Cat type

Fish EC50 
(mg l−1)

Fish pEC50 
(EC50 
in molar)

D. magna 
EC50 
(mg l−1)

D. magna 
pEC50 (EC50 
in molar)

Algae 
EC50 
(mg l−1)

Algae 
pEC50 (EC50 
in molar)

Algae 
ChV EC50 
(mg l−1)

Algae ChV 
pEC50 (EC50 
in molar)

Carbon- based backbone polymers

27 0.69 6.20E + 03 0 0 11 3 4.6 6.130 NA NA 1.3 6.678 0.16 7.588

28 0.7 1.80E + 03 NA NA NA NA 9.2 5.291 300 3.778 2.2 5.913 0.88 6.311

28 0.7 1.80E + 03 NA NA NA NA 8.5 5.326 310 3.764 NA NA NA NA

28 0.7 1.80E + 03 NA NA NA NA 3.9 5.664 NA NA NA NA NA NA

29 0.7 8.00E + 06 0 0 4 4 3.3 9.385 NA NA 360 7.347 130 7.789

30 0.7 8.00E + 06 0 0 4 4 10.61 8.877 28.2 8.453 NA NA NA NA

31 0.7 8.00E + 06 0 0 4 4 10 8.903 40 8.301 NA NA NA NA

32 1.1 6.00E + 03 1 1 0 3 30 5.301 NA NA NA NA NA NA

33 1.4 2.40E + 03 13 2 0 2 17 5.150 16 5.176 0.52 6.664 0.27 6.949

34 2 2.50E + 06 NA NA 2 3 0.97 9.411 1.7 9.167 NA NA NA NA

34 2 2.50E + 06 NA NA 1 3 2.3 9.036 NA NA NA NA NA NA

35 2 1.10E + 06 0 0 5 3 0.64 9.235 NA NA NA NA NA NA

35 2 1.10E + 06 0 0 5 3 1.2 8.962 NA NA NA NA NA NA

36 2.1 1.90E + 07 0 0 4 3 0.84 10.354 NA NA NA NA NA NA

37 3 1.00E + 02 NA NA 2 3 0.9 5.046 NA NA NA NA NA NA

38 3.1 1.80E + 05 0 0 1 4 0.32 8.750 NA NA NA NA NA NA

39 3.3 5.00E + 06 0 0 3 2 1.5 9.523 0.09 10.745 0.035 11.155 0.006 11.921

40 3.4 5.00E + 04 0 0 4 4 0.6 7.921 NA NA NA NA NA NA

41 3.4 5.00E + 04 0 0 4 4 0.3 8.222 NA NA NA NA NA NA

42 3.6 2.50E + 05 0 0 4 4 0.73 8.535 0.18 9.143 0.025 10.000 0.013 10.284

43 4.5 1.00E + 06 0 0 4.5 4 0.31 9.509 NA NA NA NA NA NA

44 4.6 1.00E + 06 0 0 5 4 0.99 9.004 NA NA NA NA NA NA

45 5.1 2.20E + 05 0 0 4 4 0.76 8.462 NA NA NA NA NA NA

46 6 5.00E + 03 NA NA 0 4 0.15 7.523 NA NA NA NA NA NA

46 6 5.00E + 03 NA NA 0 4 0.16 7.495 NA NA NA NA NA NA
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Comp # %a- N AvMW (Da) MW < 1000 Da% MW < 500 Da%
Cat 
Pos Cat type

Fish EC50 
(mg l−1)

Fish pEC50 
(EC50 
in molar)

D. magna 
EC50 
(mg l−1)

D. magna 
pEC50 (EC50 
in molar)

Algae 
EC50 
(mg l−1)

Algae 
pEC50 (EC50 
in molar)

Algae 
ChV EC50 
(mg l−1)

Algae ChV 
pEC50 (EC50 
in molar)

46 6 5.00E + 03 NA NA 0 4 0.29 7.237 NA NA NA NA NA NA

47 6.4 1.00E + 03 38 12 0 4 0.72 6.143 0.073 7.137 0.014 7.854 0.006 8.222

48 7.8 1.00E + 03 32 23 0 2 1 6.000 2.9 5.538 0.015 7.824 0.007 8.155

49 8 5.00E + 03 NA NA 0 4 0.13 7.585 0.34 7.167 0.016 8.495 NA NA

49 8 5.00E + 03 NA NA 0 4 0.22 7.357 NA NA NA NA NA NA

50 8.1 1.50E + 03 20 5 0 2 0.73 6.313 NA NA 0.047 7.504 0.03 7.699

51 8.1 5.80E + 04 1 1 2.5 4 0.18 8.508 NA NA 0.02 9.462 0.008 9.860

52 9.2 4.00E + 03 49 19 0 3 0.5 6.903 NA NA NA NA NA NA

53 11 1.80E + 03 55 26 0 3 0.22 6.913 0.58 6.492 0.07 7.410 0.034 7.724

54 11 1.50E + 03 44 26 0.1 1 0.2 6.875 NA NA NA NA NA NA

55 12 8.00E + 03 NA NA 0 2 1.9 6.624 1.2 6.824 NA NA NA NA

56 14 2.00E + 03 20 3 0 2 0.1 7.301 0.69 6.462 0.061 7.516 0.03 7.824

56 14 2.00E + 03 20 3 0 2 0.16 7.097 0.38 6.721 0.052 7.585 0.01 8.301

56 14 2.00E + 03 20 3 0 2 0.1 7.301 NA NA NA NA NA NA

57 14 2.00E + 03 NA NA 0 2 0.3 6.824 0.78 6.409 0.08 7.398 0.044 7.658

58 14 2.00E + 03 25 5 0 2 0.072 7.444 0.276 6.860 0.032 7.796 0.017 8.071

58 14 2.00E + 03 25 5 0 2 0.084 7.377 2.9 5.839 0.08 7.398 0.05 7.602

58 14 2.00E + 03 25 5 0 2 0.16 7.097 NA NA NA NA NA NA

59 15 2.50E + 04 NA NA 0 2 0.26 7.983 0.26 7.983 NA NA NA NA

59 15 2.50E + 04 NA NA 0 2 0.24 8.018 NA NA NA NA NA NA

60 17 5.00E + 04 1 1 0 2 0.45 8.046 NA NA NA NA NA NA

61 20 2.50E + 04 NA NA 0 2 0.32 7.893 0.17 8.167 NA NA NA NA

61 20 2.50E + 04 NA NA 0 2 0.32 7.893 NA NA NA NA NA NA

61 20 2.50E + 04 NA NA 0 2 0.23 8.036 NA NA NA NA NA NA

61 20 2.50E + 04 NA NA 0 2 0.2 8.097 NA NA NA NA NA NA

Silicone- based backbone polymers

62 0.4 1.10E + 03 23 19 4.5 2 300 3.564 370 3.473 0.11 7 0.09 7.087

63 0.5 3.00E + 04 0 0 3 1 NA 44 5.834 NA NA NA NA

64 0.7 7.60E + 03 NA NA 5.5 1 NA 1 6.881 NA NA NA NA

(Continued)

0005138413.INDD   437 10/28/2021   7:03:51 PM

 10.1002/9781119681397.ch22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119681397.ch22 by D

anish T
echnical K

now
ledge, W

iley O
nline L

ibrary on [03/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Table 22.1  (Continued)

Comp # %a- N AvMW (Da) MW < 1000 Da% MW < 500 Da%
Cat 
Pos Cat type

Fish EC50 
(mg l−1)

Fish pEC50 
(EC50 
in molar)

D. magna 
EC50 
(mg l−1)

D. magna 
pEC50 (EC50 
in molar)

Algae 
EC50 
(mg l−1)

Algae 
pEC50 (EC50 
in molar)

Algae 
ChV EC50 
(mg l−1)

Algae ChV 
pEC50 (EC50 
in molar)

65 0.7 7.60E + 03 NA NA 4.5 1 NA 0.5 7.182 NA NA NA NA

66 0.7 7.80E + 03 NA NA 4.5 4 NA 0.1 7.892 NA NA NA NA

67 0.7 7.80E + 03 NA NA 4.5 1 6.1 6.107 1 6.892 NA NA NA NA

67 0.7 7.80E + 03 NA NA 4.5 1 NA 1.1 6.851 NA NA NA NA

67 0.7 7.80E + 03 NA NA 4.5 1 NA 1.4 6.746 NA NA NA NA

68 0.78 1.00E + 04 4 2 8.5 1 28 5.553 15 5.824 NA NA NA NA

69 2.6 1.70E + 03 17 5 7 4 0.65 6.418 0.16 7.026 9.6 5.248 NA NA

70 5.5 1.10E + 03 5 0 7 2 1.17 5.973 1.04 6.024 NA NA NA NA

Natural- based backbone polymers

71 0.07 2.30E + 06 0 0 4 3 850 6.432 NA NA 1000 6.362 1000 6.362

72 0.2 3.00E + 07 0 0 3 4 1000 7.477 177 8.229 NA NA NA NA

73 0.29 3.00E + 07 0 0 3.3 3 1000 7.477 1000 7.477 NA NA NA NA

74 0.4 1.00E + 07 0 0 3 3 1000 7.000 1000 7.000 NA NA NA NA

75 0.93 2.20E + 06 0 0 5 4 1.18 9.271 NA NA NA NA NA NA

75 0.93 2.20E + 06 0 0 5 4 0.37 9.774 NA NA NA NA NA NA

76 0.93 9.80E + 05 NA NA 10 4 NA NA 130 6.877 NA NA NA NA

77 1.7 7.30E + 04 20 10 4 4 0.86 7.929 NA NA NA NA NA NA

78 3.4 1.70E + 03 30 25 4 4 1.5 6.054 26 4.815 0.62 6.438 0.39 6.639

79 4.3 5.00E + 05 0 0 0 1 570 5.943 11 7.658 480 6.018 480 6.018

%a- N, cationic charge density in percent amine nitrogen; Cat pos, position of cation in polymer; cat type, type of cation i.e. primary amine (1°), secondary amine (2°), tertiary 
amines (3°), and quaternary amines (4°).
Source: Boethling, R. S.; Nabholz, J. V., Environmental assessment of polymers under the US Toxic Substances Control Act. United States Environmental Protection 
Agency: 1996.
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and the distribution of oligomers, physical properties, etc. In the present dataset  [1], the names as well as 
explicit chemical structures of the polymers are not revealed, although the number of polymers with corre-
sponding toxicity against different species (fish, D. magna, and green algae), and six different associated proper-
ties (Charge Density (a-N%), avMw, %MW less than 1000 Da, %MW less than 500 Da, Cation position, and 
Cation type [i.e. primary (1°), secondary (2°), tertiary (3°), and quaternary (4°) cation]) have been reported. The 
initial idea was to use these properties as descriptors for the modeling. However, the number of these properties 
is limited. Hence, we included the backbone structure of the polymers as additional descriptors. In this way, we 
got three more descriptors namely: C-backbone, Si-backbone, and Natural-backbone. For example, when a 
polymer has a C-backbone, the assigned value is 1 for the C-backbone descriptor and 0 for Si-backbone and 
Natural- backbone descriptors. Similarly, we defined other two indicator variables, cation position and cation 
type. In case of cation position properties, based on the available position for at least one occurrence, we have 
defined nine descriptors namely: cation position 0, 1, 2, 3, 4, 5, 7, 8, and 11. Therefore, a total set of 17 descrip-
tors were prepared for modeling. Cation position is explored by computing nine descriptors, but not cation type. 
We explored the cation and the types of cations present. Many cation types are present in a polymer but were 
considered as single descriptor, as including the different types did not have any effect nor improvement of 
the models.

22.2.4  Dataset Division

To validate each individual QSTR strategically, we divided the fish dataset into training and test sets by randomly 
employing a 3 : 1 ratio. The training set compounds were involved in model generation, while the test set com-
pounds were used for validation of the final models. However, for the remainder of the datasets, we have used all 
the polymers in model generation due to the small size of datasets and determined the robustness of the generated 
models using the leave-many-out cross-validation approach as it is wasteful to keep aside some molecules as test 
compounds in case of small datasets.

22.2.5  Model Development

The dataset of 17 descriptors with toxicity endpoints was subjected to development of a genetic algorithm (GA) 
using software tools freely available at https://dtclab.webs.com/software-tools. As per the size of the dataset, the 
length of QSTR equation was decided based on the specified criteria of 5 : 1 ratio of number of observations to the 
number of descriptors and a GA run was made repeatedly to obtain a number of different combinations of genetic 
algorithm derived multiple linear regression (GA-MLR) models [9]. In most of the cases, the resulting models 
were obtained by partial least squares (PLS)  [2] regression applied to the selected descriptors of the GA-MLR 
models except the green algae 96 h dataset.

Similarly, interspecies quantitative structure–toxicity relationship (i-QSTR) models were prepared between 
fish, D. magna, and green algae to explore whether the toxicity data of one species could be helpful for the predic-
tion of toxicity of another species. The response endpoint of one species acts as the dependent variable and the 
response endpoint of another species acts as one of the independent variables along with calculated descrip-
tors [3]. The obtained model can be used for the prediction of the toxicity of untested and new polymers when 
toxicity to one species available and toxicity to another species is missing. Thus, these i-QSTR models can also 
serve as toxicity data gap filling. In this sense, these models are structurally similar to those interspecies extrapola-
tion tools developed and used by US EPA in WebICE (https://www3.epa.gov/webice/index.html). These models 
are capable of extrapolating data for one toxicity endpoint to another toxicity endpoint when the data for the 
second species are unavailable  [10]. i-QSTR can overcome the cost of multiple toxicity tests and improve the 
understanding of the mechanism of toxic action (MOA) of chemicals for different organisms. Such models may 
be more reliable compared to a single endpoint QSTR models and can thus be used in order to fill the data gaps 
where toxicity value for a particular compound is absent for a specific endpoint.
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22.2.6  Model Validation

The most crucial step in QSTR modeling is model validation. In the current work, the generated models were vali-
dated by employing universally acceptable internal (all cases) and external validation metrics (in case of fish 
QSTR modeling). The model quality was ascertained by evaluating the determination coefficient (R2), leave-one-
out determination coefficient (QLOO

2 ), external set prediction variance (Rpred
2 ) , and mean absolute error (MAE) of 

predictions [11, 12] for each model. The robustness of the generated models was also examined by considering the 
leave-many-out approach (QLMO

2 ). The applicability domain (AD) study was performed employing the distance to 
model of chemical space (DModX) approach, and a Y-randomization study was performed generating 100 ran-
dom models using the soft independent modeling of class analogy (SIMCA)-P software tool [13]. The AD of each 
model was defined in the chemical space, within the domain of predictions of any compound being considered as 
reliable. In the DModX approach, if the compound has higher DModX score than the D-critical value, then the 
compound is considered as an outlier (training set) and outside the AD (test set). The Y-randomization study was 
performed to prove that the developed models were not obtained by random chance.

22.3  Results and Discussion

22.3.1  QSTR Modeling for Fish Toxicity 96 h Dataset

An initial analysis suggested that out of 38 polymers, three showing high prediction residuals might be influential 
observations for the QSTR model. Thus, the identified three polymers (ID#: 27, 36, 71) were removed from the 
dataset. The final curated dataset of 35 polymers was used for toxicity modeling against fish by dividing the data-
set into two individual sets (i.e. training and test sets) using a random approach. The training set comprises 27 
polymers which were used for development of the QSTR model, while the test set consists of 14 polymers used for 
extensive validation of the developed model. The resulting robust four-descriptor model was generated employing 
GA-MLR [4] followed by PLS using three latent variables (LVs) [2]. The final model was considered significant 
and acceptable based on the quality of predictions such as 76% predictive variance (R2), 61% leave one out variance 
(Q2

(LOO)), and 81% external predictive variance (R2
pred).

	

pEC EC50 50 8 21 0 142 2 71in Molar Charge Density a N Si b. . % . aackbone
MW less than Da cat pos0 0577 500 2 31 0. % . 	

	

n n R Q R rmtrain test pred LOLV27 8 3 0 767 0 614 0 8142 2 2; ; ; . ; . ; . ; OO LOO

test LOO TesMAE

2 2

2 2

0 493 0 170

0 720 0 143

. ; . ;

. ; . ;

rm

rm rm tt TestQuality Moderate100 0 448% . ;
	

To determine the relative importance of each variable appearing in the final QSTR model, we performed a vari-
able importance projection (VIP) plot analysis [14] using the SIMCA-P software tool, and found that out of the 
four appearing variables, three variables (Si-backbone, %MW less than 500 Da and Cat pos 0 resulted in higher VIP 
scores) were the most important ones, while charge density (a-N%) was considered less significant compared to 
the other three (Figure 22.3).

Further, we have performed a loading plot analysis to find out the most influential descriptors in the 
QSTR. Charge density (a-N%), Si-backbone, %MW less than 500 Da were considered the most influential descrip-
tors as they are situated far away from the origin and Cat pos 0 is somewhat less influential variable as it is located 
near to the center of plot (Figure 22.4).

For the randomization study, 100 random models were generated by shuffling the value of the response varia-
ble, while the independent variables were used as it is. For the random models, the value of R2Y intercept and Q2Y 
intercept of the generated models should not exceed 0.3 and 0.05, respectively. In our case, it was found that the 
value R2Y intercept and Q2Y intercept of generated models were below than the stated limits, and the developed 
model was considered as non-random (not obtained by chance) (Figure 22.5).
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Figure 22.3  VIP plot of the PLS model for prediction of cationic polymer acute toxicity to fish.
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Figure 22.4  Loading plot of the PLS model for 
prediction of cationic polymer acute toxicity to fish.

Randomization Plot
pIC50(Fish) Intercepts: R2 = (0.0, 0.0473), Q2 = (0.0, –0.381)
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Figure 22.5  Randomization plot (unitless) of the PLS model for prediction of cationic polymer acute toxicity to fish (R2 and 
Q2 values for the random models [Y-axis]) are plotted against correlation coefficient between the original Y values and the 
permuted Y values (X axis).
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22  QSAR Modeling of Aquatic Toxicity of Cationic Polymers442

Lastly, we performed the AD study and found that none of the polymers was considered as an outlier for train-
ing set while one polymer (ID# 60) was identified outside the AD for the test set (Figures 22.6 and 22.7).

All the variables appearing in the final model demonstrate negative contributions (decreased toxicity) toward 
fish except charge density, suggesting that a polymer with silicone-based backbones, presence of cation at position 
0 and %MW less than 500 Da leads to a decrease in the fish toxicity (pEC50) (an increase in the EC50 value of the 
polymer against fish) and vice versa. It is stated that the position of cation in the polymer backbone as well as the 
type of polymer backbone were the most important factors to influence the aquatic toxicity of polymers [1]. For 
example, compounds 68 (presence Si-backbone in the chemical structure), 79 (due to presence of the cationic 
charge at position 0) showed a decrease in the fish toxicity (higher LC50 values). On the other hand, variables with 
a positive impact for the toxicity is cationic charge density of molecules, indicating that higher charge density 
results into higher toxic polymer and vice versa. For example, polymers 58 and 56 show higher charge density 
which results in higher toxicity to fish.
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2.00

1.00

Training set compound nos.

M1-D-Crit[3] = 2.644

D
M

od
X

P
S

[3
](

N
or

m
)

0.00

29 30 31 32 35 38 39 40 41 43 45 47 48 51 52 54 56 58 62 68 69 73 74 75 77 78 79

Figure 22.6  AD plot of training set compounds of the PLS model generated for prediction of cationic polymer acute 
toxicity to fish at 95% confident level.
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Figure 22.7  AD plot of test set compounds of the PLS model generated for prediction of cationic polymer acute toxicity to 
fish at 95% confidence level.
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22.3 Results and Discu  ssio 443

22.3.2  QSTR Modeling for Daphnia magna Toxicity 48 h Dataset

An initial analysis suggested that out of 20 polymers, two were showing high prediction residuals which might 
have a negative influence on the quality of the resulting QSTR model. Thus, the identified two polymers (ID#: 33, 
39) were removed from the dataset. The QSTR model was generated by employing the final curated dataset of 18 
polymers with reported experimental toxicity against D. magna using GA-MLR  [9] followed by the PLS algo-
rithm [10]. As the dataset is too small for division into training and test sets, instead of dataset division, we per-
formed leave-many-out cross-validation analysis to examine the quality and robustness of the final model using 
MINITAB software tool using the entire dataset. The final PLS model consists of three descriptors and 2LVs.

	pEC EC50 50 6 505 0 0990 500 1 231in Molar MW less than Da Sib. . % . aackbone Cation type0 446. 	

n R Q Q rmOtrain LOO L LOOLV18 2 0 809 0 654 0 663 0 52 2
3

2 2, , . , . , . , . 443 0 124
0 625

2

100

, . ,
.%

rmLOO

TrainingMAE 	

As with the fish toxicity model, we have performed different plot analyses of the generated QSTR model against 
D. magna. The most important and influential descriptors in the final model were identified using the VIP and 
loading plot analyses, respectively. The plots reveal that %MW less than 500 Da was the most important as well as 
most influential descriptor in the final model although rest of the two descriptors were of almost similar impor-
tance and influence in the generated model (Figures 22.8 and 22.9).
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Figure 22.8  VIP plot of the PLS 
model for prediction of cationic 
polymer acute toxicity to D. magna.
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Figure 22.9  Loading 
plot of the PLS model 
for prediction of 
cationic polymer acute 
toxicity to D. magna.
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22  QSAR Modeling of Aquatic Toxicity of Cationic Polymers444

The Y-randomization study also suggested that based on the stated criteria the model was not obtained by 
chance (Figure 22.10).

Lastly, we checked the AD of the obtained QSTR model in the chemical space using DModX approach employ-
ing the SIMCA-P, and the AD revealed that none of the polymers were outliers (Figure 22.11).

The final PLS model comprises three unique variables with either positive or negative contributions toward 
toxicity against D. magna. The variables with a negative contribution (inversely proportional to the toxicity) 
include polymers with molecular mass less than 500 Da and silicone-based polymeric backbone, indicating that 
higher values of these variables result in a decrease in the toxicity of the polymer and vice versa. For example, 
compound 62 shows lower toxicity due to a high value of %MW less 500 Da variable as well as presence of silicone-
based backbone. On the other hand, cation type polymers had a positive contribution. From a closer analysis of 
the dataset, it was importantly revealed that a polymer with a quaternary cation (compound ID# 30) in its chemi-
cal structure resulted in higher toxicity toward D. magna.

Randomization Plot
pIC50(Daphnia) Intercepts: R2 = (0.0, 0.0224), Q2 = (0.0, –0.342)
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Figure 22.10  Randomization plot of the PLS model for prediction of cationic polymer acute toxicity to D. magna (R2 and Q2 
values for the random models [Y-axis]) are plotted against correlation coefficient between the original Y values and the 
permuted Y values (X axis).
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Figure 22.11  AD plot of the PLS model generated for prediction of cationic polymer acute toxicity to D. magna at 95% 
confidence level.

 10.1002/9781119681397.ch22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119681397.ch22 by D

anish T
echnical K

now
ledge, W

iley O
nline L

ibrary on [03/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22.3 Results and Discu  ssio 445

22.3.3  QSTR Modeling for Green Algae Toxicity 96 h Dataset

An initial analysis suggested that out of 17 polymers, three were showing high prediction residuals and these 
might be influential observations for the QSTR model. Thus, the identified three polymers (ID:27, 39, 42) were 
removed from the dataset. The resulting MLR model for toxicity prediction of polymers toward green algae was 
generated using the entire dataset of 14 polymers. The best model was based on only two descriptors. For the 
present endpoint too, we have tried to generate a PLS model, but due to the drastic reduction of quality of Q2

LOO 
parameter, we have reported the following acceptable MLR model for toxicity prediction of polymers against 
green algae [9].

	pEC EC50 50 5 91 1 61 1 52 5in Molar C backbone cat pos. . . 	

	n R Q R rmtrain LOO Adjusted LOO14 0 826 0 631 0 663 0 52 2 2 2; . ; . ; . ; . 117 0 145 0 6162
95rmLOO TrainingMAE. ; .% 	

The final MLR model based on two variables with positive contributions toward toxicity against green 
algae with good quality of predictions explained 82% variance for the training set (R2) and 63% in terms of 
LOO variance (Q2). The descriptors provide information about the type of backbone (carbon based) as well 
as position of cation (cat pos 5) in the polymer backbone. A closer analysis of the data revealed that all the 
compounds with carbon-based polymer backbones show average toxicity of pEC50 = 7.69 (EC50 in molar) and 
only one compound throughout the dataset with presence of cation at position 5 shows toxicity of pEC50 = 7 
(EC50 in molar).

22.3.4  QSTR Modeling for Chronic Toxicity Against Green Algae

An initial analysis suggested that out of 16 polymers, three were showing high prediction residuals which might 
be influential observations for the QSTR model. Thus, the identified three polymers (ID#: 39, 42, 51) were removed 
from the dataset. The dataset of 13 polymers was used to predict the chronic toxicity of polymers against green 
algae. In this case, the final model was obtained by GA-MLR [9] followed by PLS regression [10] with one LV, 
while the robustness of the selected model was examined by employing the Q2

LMO approach.

	pEC EC50 50 6 361 0 013 500 1 318in Molar MW less than Da Cbac. . % . kkbone	

n R Q Q rmtrain LOO L O LOOLV13 1 0 781 0 631 0 606 0 42 2
3

2 2; ; . ; . ; . ; . 668 0 276
0 343

2

100

, . ;
.%

rmLOO

TrainingMAE

From the analysis of VIP and loading plots, we have found that the most important variable in the resulting 
model was C-backbone, while %MW less than 500 Da was considered as the least significant descriptor 
(Figures 22.12 and 22.13).

The Y-randomization study also suggested that based on the stated criteria the model was not obtained by 
chance (Figure 22.14).

Finally, we performed the AD study and found that none of the polymers were outliers (Figure 22.15).
Similar to the acute green algae toxicity model, the final PLS model was based on the two variables with positive 

contributions toward chronic green algae toxicity with good quality of predictions explained (78% variance for the 
training set (R2), 63% in terms of LOO variance (Q2)). The descriptors provide information about the type of back-
bone (carbon based) as well as average number MW of polymers in thousand with percent less than 500 Da. A 
closer analysis of the data revealed that all the compounds with carbon-based polymeric backbone showed an 
average toxicity of pEC50 = 7.76 M while compounds with absence of carbon-based polymeric backbone result in 
an average toxicity of pEC50 = 6.52 M.
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22  QSAR Modeling of Aquatic Toxicity of Cationic Polymers446

22.3.5  Interspecies Modeling of Polymers

22.3.5.1  i-QSTR Modeling Between D. magna (48 h) and Fish (96 h)
Out of 38 polymers in the fish dataset, 19 polymers were found to have their reported pEC50 value against D. magna. 
These 19 polymers had toxicity data for both fish and D. magna and were used for i-QSTR model development 
using the GA-MLR [9] followed by the PLS technique [10].
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Figure 22.12  VIP plot of the 
PLS model for prediction of 
cationic polymer chronic toxicity 
to green algae.
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Figure 22.13  Loading plot of the PLS model for prediction of the of cationic polymer chronic toxicity to green algae.

Randomisation Plot
pIC50(green algae) Intercepts: R2 = (0.0, –0.018), Q2 = (0.0, –0.227)
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Figure 22.14  Randomization plot of the PLS model for prediction of cationic polymer chronic toxicity to green algae (R2 
and Q2 values for the random models [Y-axis]) are plotted against correlation coefficient between the original Y values and 
the permuted Y values (X axis).
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pEC D magna EC50 50 1 215 0 0402 500_ . . . %in Molar MW less than Da 00 339 3 0 860 50. . _cat pos FishpEC

	

	

n R Q Q rmtrain LOO L O LOOLV19 2 0 842 0 753 0 715 0 62 2
3
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The final model was obtained with two LVs, and subsequently the robustness was determined by the leave-
many-out cross-validation approach. The final PLS model was used for prediction of D. magna toxicity of rest of 
19 compounds of the fish dataset whose toxicity data was missing for D. magna. The bar plot (Figure 22.16) depicts 
the experimental fish toxicity and predicted D. magna toxicity for 19 polymers using the i-QSTR model.

We can conclude that the polymers had similar pattern of toxicity for fish and D. magna which is an important 
observation for toxicity data gap filling and risk assessment of the studied polymers. This supports observations 
using WebICE where D. magna, for example, predicts an acute toxicity of 1700 μg l−1 to rainbow trout when 
Daphnia is measured to have an acute toxicity of 1000 μg l−1. In WebICE, the toxicants are agnostic, being built 
from trends of sensitivity and tolerance to a wide array of toxicants. Importantly, insights for cationic polymers are 
not found in the WebICE database.

22.3.5.2  i-QSTR Modeling Between Fish (96 h) and D. magna (48 h) Toxicities
Out of 20 polymers in the daphnia dataset, 19 polymers were found to have their experimental pEC50 value against 
fish. These 19 compounds were used for model development using the GA-MLR [9] followed by the PLS tech-
nique [10]. The best model was based on the two components (obtained by extracting the vital information from 
three individual descriptors for i-QSTR modeling).

	
pEC EC50 50 2 205 0 399 0 505Fish in Molar Sibackbone cat po. . . ss5 0 690 50. .pEC D magna 	

n R Q Q rmtrain LOO L O LOOLV19 2 0 823 0 776 0 778 0 62 2
3

2 2; ; . ; . ; . ; . 889 0 140
0 509

2

100

; . ;
.%

rmLOO

TrainingMAE 	

The final PLS model was used for prediction of fish toxicity of single compound (ID# 63) with reported D. magna 
toxicity value.
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Figure 22.15  AD plot of the PLS model generated for prediction of the polymer chronic toxicity to green algae at 95% 
confidence level.
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22  QSAR Modeling of Aquatic Toxicity of Cationic Polymers448

22.3.5.3  i-QSTR Modeling Between Acute Green Algae (96 h) and Acute Fish (96 h) Toxicities
Comparing acute green algae (96 h; EC50) and fish (96 h) datasets, 17 polymers were found to have their reported 
pEC50 value for both species. These 17 polymers were employed for model development using the GA-MLR [9].

	pEC EC50 50 4 22 1 36 2 75 3algae in Molar Cbackbone cat pos. . . 11 54 5 0 297 50 50. .cat pos Fish in molarpEC EC 	

	n R Q R rmtrain LOO Adjusted LOO19 0 802 0 649 0 737 0 52 2 2 2; . ; . ; . ; . 448 0 1072; .rmLOO 	

The resulting MLR model was employed for the prediction of green algae acute toxicity of remaining 21 poly-
mers of the fish dataset which had experimental toxicity data to fish but acute toxicity to green algae was missing. 
The bar plot (Figure 22.17) depicts the experimental fish toxicity and predicted acute green algae toxicity of the 
above mentioned 21 polymers.

Analyzing the bar plot, we can conclude that the polymers had similar pattern of acute toxicity for fish and 
green algae except polymers (ID#: 32, 68, 72, 73, 74) for which green algae showed much higher acute toxicity 
than fish, which is an important observation of toxicity data gap filling and risk assessment of these studied poly-
mers. Importantly, it appears that the inter-species sensitivity relationships are somewhat more variable than 
fish-Daphnia relationships, which is expected based on taxonomic distance [15].

22.3.5.4  i-QSTR Modeling Between Fish (96 h) and Acute Green Algae (96 h) Toxicities
Out of 17 polymers of the green algae (96 h) dataset, 17 polymers were found to have their reported pEC50 value 
against fish. These 17 common polymers with toxicity data for both species were used for model development 
using the GA-MLR [9] followed by PLS [10]. The final PLS model was obtained with one LV and acceptable values 
of validation metrics.

	pEC pECEC EC50 50 50 501 42 0 539Fish in Molar G Algae in M. . . oolar av Mw Cation type0 00000031 0 365. . 	

n R Q Q rmtrain LOO L O LOOLV17 1 0 705 0 610 0 56 0 482 2
3

2 2; ; . ; . ; . ; . 00 0 218
0 706

2

100

; . ;
.%

rmLOO

TrainingMAE

22.3.5.5  i-QSTR Modeling Between D. magna (48 h) and Acute Green Algae (96 h) Toxicities
Out of 17 polymers of the acute green algae (96 h) set, 12 polymers were found to have their reported toxicity value 
against D. magna too. These 12 compounds were used for model development using the GA-MLR [9] followed by 
PLS [10].
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Figure 22.16  Experimental acute fish toxicity and predicted acute D. magna toxicity.
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	pEC D magna Ec50 50 2 726 0 0911 500. . . %in Molar MW less than Da 0 643 50 50. .pEC ECG Algae in Molar 	

n R Q Q rmtrain LOO L O LOOLV12 1 0 664 0 444 0 45 0 322 2
3

2 2; ; . ; . ; . ; . 44 0 155
1 148

2

100

; . ;
.%

rmLOO

TrainingMAE

The developed model was further employed for the perdition of toxicity of five polymers to D. magna which had 
toxicity to green algae but toxicity to D. magna were missing. The bar plot depicts the experimental acute toxicity 
to green algae and predicted toxicity to D. magna for these five polymers (Figure 22.18).

Analyzing the bar plot, we can conclude that the polymers had similar pattern of toxicity for fish and 
D. magna which is an important observation for toxicity data gap filling and risk assessment of these studied 
polymers.

22.3.5.6  i-QSTR Modeling Between Acute Green algae (96 h) and D. magna (48 h) Toxicities
In this case, after repeated runs of GA with changing equation length, no model was obtained with D. magna 
toxicity as the dependent variable, as the dataset was too limited and small.
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Figure 22.17  Experimental fish toxicity and predicted acute green algae acute toxicity employing the i-QSTR model.
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Figure 22.18  Experimental acute green 
algae toxicity and predicted daphnia 
toxicity employing the i-QSTR model.
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22.4  Conclusions

In the present study, we have generated different QSTR models to predict acute toxicity toward three individual 
species; fish, D. magna, and green algae, using either PLS regression or MLR technique [9, 10]. The resulting 
model for fish toxicity prediction was validated using different internationally accepted internal and external 
metrics, while other models were validated using the leave-many-out approach.

The study revealed that presence of silicone based polymeric backbone and having a high %MW less than 500 Da 
resulted in a decreased toxicity (high EC50) for fish and D. magna. On the other hand, higher cationic charge density 
(%a-N) and type of cation (especially quaternary cation) lead to an increase in toxicity to fish and D. magna (lower 
LC50), respectively. In case of green algae, the toxicity of polymeric compounds are enhanced in the presence of a 
carbon-based polymeric backbone with cation at position 5 and with higher value for %MW less than 500 Da.

This work expands and updates the work by the USEPA [1, 5] and Nolte et al.  [4]. Our work confirms that 
charge density (%a-N) is an important toxicity descriptor; however, we also demonstrate that the type of cation 
and its position impacts the toxicity significantly for fish and D. magna. For fish, several factors influence toxicity 
including: a-N%, Si backbone, %MW < 500 Da, and Cat position 0. For D. magna, %MW < 500 Da, Si backbone and 
Cat type influence toxicity. In the case of acute algal toxicity, the carbon-based backbone and cat position 5 govern 
acute toxicity. The chronic algal toxicity was influenced by the %MW < 500 Da and carbon based backbone.

The USEPA [1] found the following overall backbone driven toxicity rank: Carbon-based backbone   Si-backbone = 
Natural-backbone across species. We have further detailed this assessment as evident from the above findings.

For the first time in science, we have developed i-QSTR models for polymers, with an objective to assess whether 
the response toxicity data (pIC50) of one species could be helpful for prediction of toxicity of another species. From 
the i-QSTR modeling, we found that polymers had similar pattern of acute toxicity among fish, D. magna, and 
green algae. The resulting i-QSTR model were used for prediction of toxicity of untested compounds, which is 
important for toxicity data gap filling.

In regulatory application, development of sound strategies to support read across, especially for data poor cat-
egories, is very important [14]. Decision support for identifying domains of applicability and physical–chemical 
drivers for toxicity are necessary to qualitatively defend the establishment of chemical categories. Strong, defensi-
ble QSARs assist in quantitative hazard assessment and identify utility for both interpolation and extrapolation 
beyond the boundaries of the empirical data. As described earlier in this chapter, QSARs for data poor categories 
can become powerful additions to the assessment arsenal. European Center for Ecotoxicology and Toxicology of 
Chemicals (ECETOC)  [15, 16] in 2019 and 2020 summarized risk assessment needs, the framework to assess 
human and environmental safety of polymers, and the applicability of many previously standardized test meth-
odologies to polymer compounds. These should prove useful in the coming years as harmonized datasets from 
which additional polymer QSARs can be developed.

There are still many aspects pertaining to modeling the toxicity of cationic polymers let alone all polymers. For 
the cationic polymers, further details about the structures would help the model development, as would be pos-
sible from increasing the data base with newer datasets since the early 1990s. In addition, there are challenges to 
be clarified in terms of the toxicity testing of polymers in the lab and characterization of toxic mechanism of 
action that needs to be further analyzed. The iTAP project (http://cefic-lri.org/projects/eco-46-improved-aquatic-
testing-and-assessment-of-cationic-polymers-itap) is pursuing these and other objectives to enhance the mode-
ling of this important class of materials entering the regulatory frameworks in these years globally.
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