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A B S T R A C T   

Bioplastics (biodegradable plastics) potentially offer an encouraging alternative to conventional (petroleum- 
based) plastics. In practice, bioplastics inevitably generate a large number of bio-microplastics (bio-MPs, 
diameter <5 mm) during the degradation progress. However, the impact of bio-MPs on plant and soil health 
within agroecosystems remains incomplete. Here, a field study was conducted to investigate the effect of two 
shapes (fiber and powder) of pure polylactic acid (PLA) bio-MPs on oat (Avena sativa L.) and soybean (Glycine 
max (L.) Merr.) growth and soil health. Our results showed that PLA application at a representative soil loading 
rate of 0.2% (w/w) had no significant effect on soil enzyme activities, soil physicochemical properties (soil water 
content, pH, etc.), root characteristics, plant biomass, and crop yield. Thus, we conclude that soil quality, plant 
health, and ecosystem multifunctionality were not affected by PLA over one growing season (5 months) in the 
presence of either bio-MP shape (fiber and powder) for either crop species (oat and soybean). Overall, PLA based 
bio-MPs may not pose a significant threat to agroecosystem functions in the short term (days to months) in the 
field, thus may provide a viable environmentally benign solution to replace traditional non-biodegradable 
plastics in agroecosystems.   

1. Introduction 

Plastic mulch films provide multiple benefits for crop production 
(controlling weeds, reducing evaporation and soil erosion, increasing 
the soil and air temperature), and are thus widely used in agro-
ecosystems all over the world (Gao et al., 2021; Griffin-LaHue et al., 
2022). However, improper disposal of agricultural plastic mulch even-
tually leads to the dispersal of microplastics (MPs, diameter <5 mm) into 
agricultural soils and the wider environment (Astner et al., 2019; Rillig 
and Lehmann, 2020). This dispersal poses a considerable threat to food 
and ecological security (Huang et al., 2020b; Zang et al., 2022; Zhang 
et al., 2020). Biodegradable plastic mulch is being used as an alternative 
to reduce plastic pollution in agricultural soils (Flury and Narayan, 
2021), as bioplastics can be readily converted into CO2, water, nutrient 
ions, and the formation of microbial biomass (Yu et al., 2021). Since 
bioplastics are more susceptible to rapid degradation, more biodegrad-
able microplastics (bio-MPs) might be generated, in the short term, than 

conventional plastics within the same time frame, probably leading to 
more severe bio-MPs pollution and associated effects (Liao and Chen, 
2021; Shruti and Kutralam-Muniasamy, 2019; Zhou et al., 2023). To 
date, the potential risks of non-biodegradable MPs to the environment 
and human health have been widely discussed and lots of evidence has 
shown their detrimental effects on plant and soil health (Li et al., 2020; 
Xiao et al., 2022; Yu et al., 2022). By contrast, research on the ecological 
effects of bio-MPs is still in its infancy (Brown et al., 2023; Wang et al., 
2022; Zhou et al., 2021a). Consequently, fundamental and in-depth 
studies regarding the effects of bio-MPs on agricultural ecosystems are 
needed. 

Given that soils provide the most basic and diverse services to eco-
systems, maintaining soil health is key to agricultural sustainability 
(Brown et al., 2022b; Kopittke et al., 2019). The potential threat of MPs 
to soil ecosystem functioning and resilience has attracted increasing 
attention (Rillig, 2012; Zhao et al., 2022). Some studies have reported 
that bio-MPs increase soil aggregation, pH, and nutrient retention 
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(Lozano et al., 2021a; Lozano et al., 2021b); while others have observed 
no impact on soil biochemical properties (e.g., pH, soil carbon and ni-
trogen, as well as enzyme activities) (Mazzon et al., 2022; Qi et al., 
2020a). The paucity and inconsistency of the available results highlight 
the need for a comprehensive assessment of how bio-MPs affect soil 
quality indices (SQI) (Jia et al., 2022; Kuzyakov et al., 2020). Bio-MPs 
can also provide available C to the microbial biomass and support 
growth (depending on the native soil microbial communities’ carbon use 
efficiency) and intensify soil N immobilization and thus plant N limi-
tation (Sinsabaugh et al., 2016; Yu et al., 2021; Zhou et al., 2022a). This 
may potentially aggravate the competition for nutrients between plants 
and microorganisms and consequently suppress plant growth (Zang 
et al., 2020). 

In addition, plants can also be directly affected by MPs through 
physical interaction, which can alter root architecture and consequently 
plant growth (Chen et al., 2022; Lee et al., 2022; Yang and Gao, 2022). 
The net effect of all these individual functions can alter the overall 
ecosystem function; however, there is a lack of studies holistically 
addressing the bio-MPs effect on ecosystem multifunctionality (EMF, the 
ability of an ecosystem to deliver multiple functions simultaneously) 
(Jia et al., 2022; Manning et al., 2018). Moreover, most studies are 
limited to laboratory-based experiments, so it is imperative that studies 
on the ecological effects of bio-MPs on agroecosystems are undertaken at 
the field scale (Baho et al., 2021; Zang et al., 2020; Zhou et al., 2023). 

Briefly, the formation of bio-MPs in soil may induce negative effects 
on soil properties, plant growth, and EMF in drylands, through the 
addition of a potentially labile/semi-labile carbon source that may 
alleviate the carbon limitations of the soil microbial community (Brown 
et al., 2022). However, the majority of current research has been con-
ducted in the laboratory or greenhouse over short periods (<30 days), 
which may hamper the in-deep understanding of the impact of bio-MPs 
on soil quality and ecosystem functions in the long-term. Here, as two 
typical grain crops in the semi-arid region of China (an area with a long 
history of plastic mulching), oat and soybean have been selected to 
evaluate the effects of bio-MPs on plant-soil health (Huang et al., 
2020b). Polylactic acid (PLA) is one of the most well-known bioplastics, 
and it has proved to be an effective substitute for petroleum-based 
counterparts (Ainali et al., 2022). Equally, plastic fiber and powder 
are two ubiquitous forms of MPs in soil, and they often have different 
effects on soil functions. For example, soil microbial activity associated 
with MPs powder is lower compared to fiber (Lozano et al., 2021b). 
Herein, two shapes of PLA (i.e., powder and fiber) at a realistic field level 
of agricultural soil pollution of 0.2% (w/w) was used to explore the 
effect on soil biochemical properties and plant growth (de Souza 
Machado et al., 2018; Huang et al., 2020b). We hypothesize that 
bio-MPs would profoundly change soil quality and plant growth, 
thereby the in situ EMF would be altered by bio-MPs regardless of 
microplastic shapes and crop species. 

2. Materials and methods 

2.1. Experimental site 

The experiment was carried out at Ertai Town, Zhangbei County 
(41◦21′N, 114◦54′E), located northwest of Hebei Province, with a 
temperate continental monsoon climate. The mean temperature was 
16.6 ◦C and the mean rainfall was 373.8 mm (mainly concentrated in 
July and August) during the growth period (from May to September) of 
the past five years. The experiment site has no previous history of plastic 
mulching or organic waste application, thus the soil is unlikely to 
contain plastics from compost or sludge. The soil is classified as a Haplic 
Kastanozem (IUSS Working Group WRB, 2015) with initial properties as 
follows: soil organic carbon, 7.5 g kg− 1; total nitrogen, 0.97 g kg− 1; 
mineral nitrogen, 2.0 mg kg− 1; available phosphorus, 5.0 mg kg− 1; and 
pH (H2O), 8.0. 

2.2. Experimental design and soil sampling 

The pure non-additive PLA plastic material (Zhonglian Plastics 
Technology Co. Ltd. Fujian Province, China) was used to produce par-
ticles with a pulverizer, and then sieved through a 100-mesh filter to 
produce the bio-MPs powder; the bio-MP fiber was produced using 
shears to a length of <5 mm and a diameter of 90 μm. Bio-MPs were 
rinsed with deionized water 3 times and freeze-dried prior to use. Here, 
bio-MPs were classified into powder (spherical particles) and fiber ac-
cording to the specific surface area. Fibers represented those found in 
agricultural fertilizers such as biosolids (Piehl et al., 2018) while pow-
ders were spherical particles or fragments, similar in shape to many 
intrinsic soil particles. 

In mid-May 2021, a completely randomized design was established 
with four replicates (n = 4) for each treatment. Each experimental plot 
(2.0 × 2.0 m) was then treated with bio-MPs powder or fiber. Each plot 
was divided into 16 equal areas of 0.5 m × 0.5 m grids, from which the 
top 20 cm of soil from each grid was dug out and thoroughly mixed by 
hand with bio-MPs at a rate of 4800 kg ha− 1. This corresponds to about 
0.2% of the soil weight (with a depth of 20 cm and bulk density of 1.20 g 
cm− 3). After homogenizing the bio-MPs, the mixed soil was backfilled 
into the corresponding grid. This resulted in three treatments in this 
study: 1) Powder (PLA microplastic powder addition), 2) Fiber (PLA 
microplastic fiber addition), and 3) Control (without microplastic 
addition). The control plots were also mixed in the same way as the 
treated plots without adding any plastic. Subsequently, oat (Avena sativa 
L. cv. Bayou 14) and soybean (Glycine max (L.) Merr. cv. Jizhangdou 2) 
were planted. The field experiment followed the common practice of 
local farmers with regular manual weeding, and no irrigation and 
fertilization during the growing season of oat and soybean. 

After crop harvest in mid-September 2021, soils were sampled from 
each plot at 0–20 cm. Two sub-samples were pooled to form a mixed soil 
sample in each of the four field replicates. The samples were passed 
through a 2-mm sieve after removing the roots, litter, debris, and stones. 
Each soil sample was then stored at 4 ◦C for soil enzyme activities and 
chemical properties analysis which were performed within 5 days. 

Oat and soybean were destructively sampled from each plot, and 
plants per plot were cut at the base and divided into aboveground 
(shoot) and belowground (root) components. With the position of the 
stem as the center of the core, we manually excavated the root system 
from the surrounding soil in the 0–20 cm soil layer (more than 50% of 
the root biomass was located in this soil layer) with a hand trowel. The 
plant samples were subsequently used for the determination of dry 
biomass and root characteristic parameters. 

2.3. Soil quality assessment 

Soil bulk density (BD) was determined on an oven-dry basis by the 
cutting ring method. Soil water content (SWC) was analyzed by drying at 
105 ◦C until the weight remained stable. Soil pH and electrical con-
ductivity (EC) were measured using a pH meter and conductivity meter 
(DDS-307, Rex Electric Chemical, China), respectively, in a soil sus-
pension with a soil-water ratio of 1:2.5 (w/v). Total nitrogen (TN) 
content was analyzed by the semi-micro Kjeldahl method (Bao, 2000). 
Ammonium (NH4

+-N) and nitrate (NO3
− -N) were both determined using a 

spectrophotometer (1510, ThermoFisher, USA) after extraction of 5.0 g 
fresh soil with 20 mL 0.05 M K2SO4. Available phosphorus (Olsen-P) was 
analyzed by the Olsen method (Olsen et al., 1982) via extracting soil 
samples with 0.5 M NaHCO3. 

The activities of six hydrolases enzymes: C-related (β-glucosidase, 
BG; β-xylosidase, BX; β-cellobiosidase, CBH), N-related (leucine amino-
peptidase, LAP; β-1,4-N-acetyl-glucosaminidase, NAG), and P-related 
(alkaline phosphatase, ALP) cycling were fluorogenically measured 
using labeled substrates (Zang et al., 2020). Briefly, 50 mL sterile water 
was added to 1.0 g of fresh soil and suspended by shaking for 30 min at a 
speed of 200 rev min− 1. An equal amount of 50 μL soil suspension was 
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pipetted into 96-well microplates, and then 50 μL buffer and 100 μL of 
the substrate at a concentration of 400 μM were added (the enzyme 
substrates are shown in Table S1). At 60 and 120 min after substrate 
addition, the microplates were fluorometrically determined at an exci-
tation wavelength of 355 nm and an emission wavelength of 460 nm. 
Phenoloxidase (POX) and peroxidase (PER) activities were spectropho-
tometrically assayed with 96-well microplates and the substrate of 
L-DOPA (DeForest, 2009). The enzyme activities were expressed as nmol 
g− 1 dry soil h− 1. 

Here, we further combined enzyme activities as indicators of specific 
substrates or nutrient acquisition, which divided into four parts: C 
acquisition (C-acq), N acquisition (N-acq), P acquisition (P-acq), and 
oxidative decomposition (OX). They were calculated as the average 
value of multiple enzyme activities as follows (Luo et al., 2018): 

C − acq=(BG+BX+CBH) / 3 (1)  

N − acq=(LAP+NAG) / 2 (2)  

P − acq = ALP / 1 (3)  

OX=(POX+ PER) / 2 (4)  

2.4. Plant quality assessment 

At the physiological maturity stage, grain yield for each plot was 
determined by collecting the plants from a full length of a middle row, 
dried, and corrected to 13% grain moisture content to calculate grain 
yield (t ha− 1). The root samples were washed with running water to 
obtain the root system for each plant. WinRHIZO software (Regent In-
struments Inc. Canada) was used to analyze scanned images of the roots 
to determine the root length, root surface area, and root volume. The 
scanned roots were then collected and dried to constant weight before 
recording their weights (root biomass). Also, aboveground plant sam-
ples were dried at 80 ◦C for 72 h to determine shoot biomass after the 
height was recorded. 

2.5. Quantification of plant growth, soil quality, and ecosystem 
multifunctionality 

Soil quality index (SQI) was calculated using an SQI-area approach 
by comparing the area on a radar graph comprising all soil parameters 
that equal to the sum of individual triangles comprising the whole figure 
(Jia et al., 2022; Kuzyakov et al., 2020). The plant growth index (PGI), a 
single comprehensive index reflecting plant growth, was determined in a 
similar way to the SQI calculation (Nayab et al., 2022). Ecosystem 
multifunctionality (EMF) was calculated based on 19 ecosystem func-
tions, which included the majority of soil functions (except for BD, SWC, 
pH, and EC) and all plant parameters measured in this study (Garland 
et al., 2021; Lozano et al., 2021a). Detailed calculation methods of PGI, 
SQI, and EMF are shown in the supplementary material. 

2.6. Statistical analysis 

The Shapiro-Wilk test was conducted to determine the normality of 
data distribution within each variable group. Levene’s test was used to 
determine the homogeneity of square differences between the two 
groups of variables with normal distribution. An independent sample t- 
test was performed once the square differences between the two groups 
were equal; otherwise, an adjusted t-test (i.e., Welch’s t-test) was per-
formed. A Mann-Whitney U test was used for comparison between 
groups with non-normal distribution. All data were analyzed using IBM 
SPSS Statistics 26 (IBM, USA). The histograms were drawn by SigmaPlot 
14.0 (Systat Software Inc. USA), and the radar graphs, as well as the 
heatmap, were drawn by Origin 2021 (OriginLab Corp. USA). A com-
bination graph of correlation heat map of soil and plant parameters and 

mantel test line was drawn using the R package (“ggcor”) with the R 
4.1.2 (Huang et al., 2020a; R Core Team, 2021). 

3. Results 

3.1. Soil enzyme activity 

PLA fiber significantly improved the soil N-acq (the sum of NAG and 
LAP) activity by 37% compared to Control with oat (P < 0.01; Fig. 1c), 
whilst it had no appreciable effect in the soybean treatments (P = 0.77; 
Fig. 1g). Moreover, bio-MPs shapes (i.e., powder and fiber) did not 
impact the C-acq, P-acq, and OX activities in soil planted with oat and 
soybean compared with the Control treatment (P = 0.06–0.89; Fig. 1). 

3.2. Soil quality and plant growth 

In soil planted with oat, similar SQI scores were observed between 
bio-MPs powder and fiber (P = 0.96; Fig. 2b), although they marginally 
increased SQI compared with Control (P = 0.11). In soil planted with 
soybean, bio-MPs powder slightly decreased the SQI compared with 
Control (P = 0.12), while there was no difference in SQI between bio- 
MPs fiber and Control (P = 0.70; Fig. 2d). 

Bio-MPs powder and fiber marginally increased the PGI score of oat 
by 18% (P = 0.44) and 47% (P = 0.06; Fig. 3b) compared with the 
Control. Also, the PGI of soybean did not show a difference in response 
to bio-MPs, regardless of fiber and powder (P = 0.87; Fig. 3d). 

3.3. Ecosystem multifunctionality 

EMF was marginally increased by bio-MPs fiber in soil planted with 
oat by 69% (P = 0.17) and 89% (P = 0.15) compared with Control and 
bio-MPs powder, whilst there was no significant difference in EMF under 
oat between bio-MPs powder and Control (P = 0.74; Fig. 4a). By 
contrast, both bio-MPs shapes slightly decreased EMF under soybean by 
14–29% compared with Control (P = 0.29–0.61; Fig. 4b). The EMF score 
was mainly influenced by SWC (r > 0.4) and plant growth parameters 
(also known as PGI) (r > 0.2, P < 0.05; Fig. 4c). 

4. Discussion 

4.1. Soil enzyme activity response to bio-MPs addition 

Soil enzyme activities are vital to a range of soil functions and are 
considered one of the most sensitive indicators of soil quality (Jabborova 
et al., 2021; Sheteiwy et al., 2021). The frequent determinations of four 
combined functional enzyme activities (C-, N-, P-acq, and OX activities) 
are usually related to soil microbial nutrient limitation and biochemical 
processes (Khosrozadeh et al., 2022; Lasota et al., 2022). It is generally 
the case that bio-MPs are C-rich but nutrient-poor (Zhou et al., 2021a, 
2021b), which triggers soil microorganisms to respond to a lack of nu-
trients (e.g., N, P) (Brown et al., 2022a; Zang et al., 2020). However, 
legume N-fixation could alleviate soil N deficiency caused by the mi-
crobial immobilization of N under bio-MPs addition (as a source of 
relatively labile C) (Song et al., 2020; Wang et al., 2021), thus bio-MPs 
did not increase the N-acq enzyme activity for the legume planted soils 
(Fig. 1). Additionally, here we observed no significant differences be-
tween C-acq enzyme activities for either plastic shape. These findings 
are contradictory to the observed significant positive effects on soil 
C-acq enzyme activities previously shown under 10% poly (3-hydrox-
ybutyrate-co-3-hydroxyvalerate) (Zhou et al., 2021a; Zhou et al., 2023), 
1% Mater-Bi (Mazzon et al., 2022), and 2% PLA (Chen et al., 2020) 
addition. Equally, the discrepancy could be due to the different types of 
bio-MPs used given that the mineralization of PLA is slow relative to the 
PHB (15.5% vs. 84.3%) within the first 230 days after application 
(Schopfer et al., 2022), as well as the distinctly different microbial C 
partitioning dynamics in the field compared to the laboratory (Oburger 

J. Chu et al.                                                                                                                                                                                                                                      



Environmental Pollution 316 (2023) 120556

4

and Jones, 2009). Therefore, PLA may be likely to become bioavailable 
as a viable C source over a long period (years to decades) (Chamas et al., 
2020), and, as such, did not cause major shifts in enzyme activities in the 
timescale measured here (months). On the other hand, the effect of 
bio-MPs on enzyme activity may also be concentration-dependent (Zhou 
et al., 2022b). For example, one study reported by Bandopadhyay et al. 
(2018) documented that high concentrations of bio-MPs (i.e., 2.0%, 
2.5%, w/w) promoted microbial growth through labile C addition. In 
short, the type and loading concentration of bio-MPs incorporated into 
the soil will likely dictate the biological and ecological effects exhibited. 
It is therefore important to explore the impact of realistic dose rates of 
bio-MPs rather than the extreme doses used in many previous studies. 

4.2. Effect of bio-MPs on soil quality and plant health 

Soil is a fundamental part of the ecosystem and contributes essen-
tially to the cycles of all elements that are critical to crop growth and 
food production (Bunemann et al., 2018; Kuzyakov et al., 2020). We 
found bio-MPs had no significant effect on SQI based on many soil in-
dicators (as shown in Fig. 2), which indicated that key soil properties 
were not fundamentally affected by PLA addition. Specifically, contrary 
to the common expectation that the degradation of PLA would decrease 
soil pH due to the generation of lactic acid (Karamanlioglu and Robson, 
2013), we observed that the soil exposed to 0.2% PLA did not affect pH 
in the field (Fig. 2). This could be ascribed to the natural field envi-
ronment having a stronger buffering capacity and a higher tolerance for 
bio-MPs addition, which was not reflected in the limited space and 
controlled temperature and moisture conditions under laboratory con-
ditions (Qi et al., 2020a) and the rapid microbial consumption of any 
lactic acid monomers released (Gunina et al., 2017). Realistically, bio-
plastic may accumulate in the soil, particularly in colder and drier cli-
mates (Satti et al., 2018), as application rates may exceed biotic and 

abiotic degradation rates (e.g., repeated use over several years) (Nan-
dakumar et al., 2021). As such, the effect of bio-MPs on soil properties 
may be concentration-dependent and temporally variable, potentially 
increasing over time. In the short term, the lower dose (0.2%) of PLA 
bio-MPs was unlikely to cause a significant shift in soil C/N ratio and 
induce N deficiency (Fig. 2), whereas higher doses (hotspots or longer 
term accumulation) of bio-MPs might affect the C/N ratio of the soil (Qi 
et al., 2020b) and are more likely to have a larger impact on soil stoi-
chiometry and associated soil microbial function (Aanderud et al., 
2018). Analogously, we found that both bio-MPs shapes had no signif-
icant effect on root characteristics and the productivity of either oat or 
soybean (Fig. 3). This was contrary to a previous greenhouse study 
undertaken with constant soil moisture under highly controlled condi-
tions (i.e., temperature, light, and nutrient availability) (Yang et al., 
2021; Zeb et al., 2022; Zhou et al., 2021a). A previous review also 
confirmed that the effects of bio-MPs on plant growth were highly 
dependent on types and concentrations (Zhou et al., 2021b). However, 
we note that longer term monitoring is required to better understand the 
full extent of the impact of bioplastics and subsequent bio-MPs on the 
agroecosystem. 

4.3. Ecosystem multifunctionality as affected by bio-MPs 

Ecosystems have the ability to simultaneously provide multiple 
functions (Jia et al., 2022; Ma et al., 2022; Manning et al., 2018), as the 
biotic and abiotic processes that occur and contribute to ecosystem 
services either directly or indirectly (Garland et al., 2021), thereby 
uniformly called EMF. Our results found that bio-MPs incorporation did 
not affect EMF for both oat and soybean cropping systems (Fig. 4a and 
b). The non-significant differences in plant growth and soil moisture 
largely determined the absence of EMF alteration by bio-MPs, confirmed 
by the significant correlation between PGI, SWC, and EMF (Fig. 4c). 

Fig. 1. Soil enzyme activities in oat and soybean 
cropping system. Panel (a) represents Z-Score stan-
dard enzyme activities with a color scale, an increase, 
and a decrease in the activity being indicated by the 
intensity of red and blue color. Panels (b–i) show four 
grouped enzyme activities. C-acquiring enzymes 
include β-glucosidase, BG; β-xylosidase, BX; and 
β-cellobiosidase, CBH. N-acquiring enzymes contain 
leucine aminopeptidase, LAP; and β-1,4-N-acetyl- 
glucosaminidase, NAG. P-acquiring enzyme refers to 
alkaline phosphatase, ALP. Oxidative decomposition 
enzymes involve phenol oxidase, POX; and peroxi-
dase, PER. Values are averages ± standard errors (n 
= 4). Asterisk indicates a statistically significant dif-
ference from the Control treatment (**, P < 0.01). 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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Moisture increases the likelihood of hydrolytic breakdown of the ester 
linkages in PLA polymer; consequently, PLA can be hydrolyzed and form 
water-soluble low molecular weight oligomers, which may act as addi-
tional C sources for microbial assimilation and subsequently affect SQI, 
PGI, and EMF (Elsawy et al., 2017; Nayab et al., 2022). However, soil 
moisture was relatively low in our field site due to limited precipitation 
(374 mm) in the semi-arid region, which may have hindered the 
decomposition of bio-MPs and its subsequent effect on EMF. This is 
supported by Lozano et al. (2021a) who found that bio-MPs fibers 
reduced soil functions only under well-watered conditions. 

4.4. Implications and future research direction 

Although the effects of bio-MPs on soil and plant were studied over 
one cropping cycle, their impact on agricultural ecosystems is still not 
fully understood. Clearly, the multi-site experimental data and further 
microbial analysis are needed in the future, in order to better understand 
the long-term ecological impact of purportedly harmless bio-MPs on the 
soil environment (Fan et al., 2022; Zhou et al., 2023). Equally, the 
degradation rates of bioplastics and bio-MPs in the field should be 
monitored over longer time periods (e.g., 10 years) to understand the 
impact of climate and soil type on the accumulation rates over multiple 
cropping cycles and the subsequent effect on soil and plant health and 
EMF. Further, depending on how they were produced, bio-MPs can be 
divided into natural polymers and synthetic polymers (Pellis et al., 

2021). However, research has focused on a limited selection of bio-MPs 
(i.e., PLA and PHB) that have mainly been used for determination in the 
greenhouse or field (Liao and Chen, 2021), calling for an expansion of 
the types and concentrations of bio-MPs. 

5. Conclusions 

This study showed that the field application of PLA had no significant 
effect on soil biochemical properties, root characteristics, plant biomass, 
and ecosystem multifunctionality over one growing season (5 months), 
regardless of bio-MPs shapes (fiber and powder) and crop species (oat 
and soybean). Although bio-MPs themselves may not be beneficial to 
plant-soil health, they do not appear to pose a significant threat to 
agroecosystem functioning. Our evidence therefore suggests that 
biodegradable plastics may provide a viable alternative to replace con-
ventional non-biodegradable plastics. Further work should be conducted 
focusing on the effects of bio-MPs types and concentrations on 
ecosystem multifunctionality in the multi-site field trials over longer 
time scales (years to decades). 
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Fig. 2. Soil quality index (SQI) area (b, d) and radar chart of the relative response of soil parameters (a, c) in oat (a, b) and soybean (c, d) cropping system. BD, bulk 
density; SWC, soil water content; EC, electrical conductivity; TN, total nitrogen; NH4

+-N, ammonium nitrogen; NO3
− -N, nitrate nitrogen; Olsen-P, available phos-

phorus; C-acq, carbon acquisition enzyme activity; N-acq, nitrogen acquisition enzyme activity; P-acq, phosphorus acquisition enzyme activity; OX, oxidative 
decomposition enzyme activity. Values are averages ± standard errors (n = 4). No statistically significant differences are observed between the polylactic acid 
microplastics treatments and the Control (P > 0.05). 
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Fig. 3. Plant growth index (PGI) area (b, d) and radar chart of the relative response of plant parameters (a, c) in oat (a, b) and soybean (c, d) cropping system. Values 
are averages ± standard errors (n = 4). No statistically significant differences are present between the polylactic acid microplastics treatments and the Control (P 
> 0.05). 

Fig. 4. Ecosystem multifunctionality (EMF) in oat (a) and soybean (b) cropping system and its correlation with plant and soil parameters (c). Pairwise comparisons of 
environmental factors are shown in the upper right corner, with a color gradient denoting Pearson’s correlation coefficients. Ecosystem multifunctionality is related 
to each soil environmental factor by Mantel test. Edge width corresponds to the Mantel’s r statistic for the corresponding distance correlations, and edge color denotes 
the statistical significance. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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