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Biodegradable plastics have been proposed as a potential solution to plastic pollution, as
they can be biodegraded into their elemental components by microbial action. However,
the degradation rate of biodegradable plastics is highly variable across environments,
leading to the potential for accumulation of plastic particles, chemical co-contaminants
and/or degradation products. This paper reviews the toxicological effects of biodegrad-
able plastics on species and ecosystems, and contextualises these impacts with those
previously reported for conventional polymers. While the impacts of biodegradable plas-
tics and their co-contaminants across levels of biological organisation are poorly
researched compared with conventional plastics, evidence suggests that individual-level
effects could be broadly similar. Where differences in the associated toxicity may arise is
due to the chemical structure of biodegradable polymers which should facilitate enzym-
atic depolymerisation and the utilisation of the polymer carbon by the microbial commu-
nity. The input of carbon can alter microbial composition, causing an enrichment of
carbon-degrading bacteria and fungi, which can have wider implications for carbon and
nitrogen dynamics. Furthermore, there is the potential for toxic degradation products to
form during biodegradation, however understanding the environmental concentration and
effects of degradation products are lacking. As global production of biodegradable poly-
mers continues to increase, further evaluation of their ecotoxicological effects on organ-
isms and ecosystem function are required.

Introduction
Over recent years, the widespread prevalence of plastics in the environment along with their associated
ecological impacts, have become a major focus of research and media coverage has raised public
awareness of these issues. Biodegradable plastics (Figure 1) have been proposed as one of the solutions
to the accumulation of plastics, as in theory these polymers can be converted by microbial action into
their elemental components (carbon dioxide, methane and microbial biomass) [1–3]. The global pro-
duction of biodegradable polymers has increased over the last two decades to reach ∼1550 thousand
tonnes produced in 2021, and continued annual increases (by up to a 2.5-fold increase by 2026) are
projected [4]. Biodegradable polymers are used in a diverse range of applications from textiles, pack-
aging and consumer goods to agricultural and fisheries products [4–6], which can lead to their
leakage into the environment.
Currently data establishing the fate of biodegradable plastics in the environment and their asso-

ciated ecological impacts are sparse. In this mini-review recent literature is evaluated to consider the
toxicological impacts of biodegradable plastics on aquatic and terrestrial species and ecosystems, and
are set within what has previously been published about the effects of conventional plastics. Based on
available data, the potential hazard presented to organisms and ecosystems from biodegradable plas-
tics, their associated chemicals and degradation products are critically evaluated, and the need for
future research into these areas are highlighted.
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Biodegradability as a systems property
The term ‘biodegradable plastic’ may give rise to misinterpretation, implying that all polymers contained
within this broad definition (e.g. polylactic acid (PLA), polybutylene adipate terephthalate (PBAT) or polybuty-
lene succinate (PBS)) are universally biodegradable across different ecosystems. Whether or not a plastic
product labelled as ‘biodegradable’ actually undergoes biodegradation will vary according to properties of the
plastic, and the specific abiotic and biotic conditions in the environment in which the plastic resides (Figure 2)
[2,7,8]. As such, biodegradability must be considered as a systems property, which is influenced by the interplay
between the specific material and the environmental conditions. PLA, for example, degrades in industrial facil-
ities (62 ± 4°C with >60% relative humidity) within weeks, yet lacks degradability in natural environments
where these conditions are not present [9,10]. Currently, standardised testing on which the biodegradability of
a product is demonstrated is undertaken in the laboratory where conditions do not replicate the wide diversity
of scenarios present in natural environments [3,11,12]. Research studies report highly variable deterioration
rates for biodegradable polymers across aquatic and terrestrial environments [13–16]. Consequently this can
lead to localised accumulation of plastic particles [17,18], as well as chemical additives or degradation products
(section 2.3), and the potential for interaction with organisms. If biodegradable plastics persist in the environ-
ment for a substantial time before biodegrading completely, it is likely that some of the risks of biodegradable
plastics will be similar to conventional plastics.

Ecological interaction and impacts of biodegradable
plastics
Microbial interactions
Conventional plastics have high stability and their chemical structures lack bonds that can be readily cleaved
through abiotic or enzymatic processes. By comparison, the carbon backbone of biodegradable polymers
contain functional groups that are enzymatically hydrolysable, which should facilitate enzymatic depolymerisa-
tion and utilisation of the polymer carbon by the microbial community. Microorganisms can rapidly colonise
man-made surfaces, such as plastic, in aquatic [19–22] and terrestrial ecosystems [23,24], with community

Figure 1. Schematic to illustrate the different categories of biodegradable and non-biodegradable, bio-based and

fossil-based polymers.

Adapted from European Bioplastics (2021).
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composition differing from the ambient environment [21,22,25]. Within marine environments the plastic
biofilm can become enriched with hydrocarbonoclastic bacteria i.e. those capable of degrading hydrocarbons
[26]. The abundance of carbon-degrading, and in some cases sulfur-degrading, microorganisms present on bio-
degradable polymers, such as Polyhydroxyalkanoates (PHAs) and cellulose acetate, far exceed those on conven-
tional polymers [27–29]. Similar results were found in soil incubations, where communities on biodegradable
polymers were enriched in carbon-degrading bacteria and specific fungal groups, for example the phylum
Ascomycota which are important for the decomposition of organic matter and have been shown to degrade
PBAT [30].
The action of biodegradation and the mineralisation of plastics into their constituent molecules may lead to

a localised inputs and increases of organic carbon in the environmental compartment of concern. For example,
biodegradable agricultural mulch films have become widely used as an alternative to polyethylene (PE) films as
they offer the possibility of being ploughed into the soil after use where they are microbially degraded [4,6].
Although the carbon input is small compared with the volume of soil into which they are incorporated, agricul-
tural soils are usually carbon limited [18]. Studies demonstrate that microbial biomass and enzyme activity can
increase [31,32] and soil microbial community structure can alter [13,30,33] in response to the carbon input
from biodegradable mulch film use, for example through an enrichment of fungal groups [13,30,34]. Moreno
and Moreno [33] found that the microbial biomass carbon increased in biodegradable mulch treatments com-
pared with PE, which suggests that biodegradable plastics may influence soil carbon dynamics. It is not clear
what effects modifications of the microbiome by biodegradable plastics may have on the soil ecosystem and its
functioning, or how long these effects may persist.
In addition, there may be indirect effects associated with the use of biodegradable plastics in the environ-

ment. Using the example of agricultural mulches, the film acts as a barrier which alters the soil microclimate
by reducing evaporation, gas exchange and light transmission and increasing temperature [18,35]. The modified
conditions can result in greater nutrient availability for rhizosphere microorganisms [18,36,37]. While these
studies have focused on PE mulch films, it can be inferred that biodegradable films will have similar indirect
effects on microbial community structure and diversity. Within the marine environment, biodegradable plastics
bags were found to reduce the oxygen availability and increase the pH of the underlying sediment [38]. The
authors did not analyse microbial communities, however it can be suggested that there would be modification
in the assemblage in favour of facultative anaerobes.

Figure 2. Summary of the characteristics of the plastic and environmental which influence deterioration rate and

biodegradation.

The biodegradability of a plastic is a systems property, which is influenced by the interplay between the composition of the

material and the abiotic and biotic environmental conditions in which it resides.
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Individual and population-level effects
Exposure to micro- or nano- plastics can lead to effects at different levels of biological functioning [39,40]
(Figure 3). From an ecological risk assessment perspective, endpoints relating to population dynamics such as
adverse effects on survival, growth and reproduction are of most concern. Numerous laboratory studies have
documented individual and population-level effects such as altered feeding rates and reduced fecundity follow-
ing exposure to conventional plastics [41–43]. In addition, impacts on specific cells and organs such as oxida-
tive stress and modified metabolic demands [44–46] have also been reported. The disposition to toxicity will
depend on the exposure concentration (particle size distribution, particle number concentration, etc.) as well as
the ecological niche and chemical matrix (i.e. type of sediment, soil or water) where the organism lives. While
the thresholds for biological effects of plastics in the environment remain to be agreed, there is a concern for
the effects on biodiversity and community-level functions [47].
Nearly 14% of all biodegradable plastics produced in 2021 were used in agricultural applications (not includ-

ing associated packaging) [4]. These items, such as mulch films (primarily composed of PLA or PBAT), are
directly applied to the land and not recovered at the end of their life, as such there is high likelihood for inter-
action with terrestrial species. Toxicity with respect to earthworm reproduction were reported for fragments of
the two biodegradable polymers: PLA and polypropylene carbonate, and the non-biodegradable polymer PE
[48], whereby all polymers caused a similar decrease in the number of cocoons produced with increasing
plastic exposure. Exposure to PLA fragments has also been shown to reduce the biomass of earthworms [49],
and alter the burrowing behaviour of earthworms [50]. Similar effects have been documented for conventional
plastics whereby the survival, growth rate, metabolic processes and burrowing behaviour of worms have been
negatively affected [51–53]. It is hard to draw conclusions about the comparative effects of biodegradable and
conventional plastics on earthworms due to the differing concentrations, particles sizes and exposure times
used between the aforementioned studies. Earthworms are key ecosystem engineers with an important role in
maintaining soil health and the breakdown and recycling of organic matter [54,55], and provide a food source
to many higher trophic level species. Consequently, a reduction in earthworm population or their function may
have ramifications on the soil ecosystem as a whole [49,56].

Figure 3. Simplified schematic illustrating potential impacts of exposure to biodegradable polymers across successive

levels of biological organisation (a). Effects induced by exposure to biodegradable polymers are presented in the boxes

(b) at the corresponding levels of biological organisation (where data are available), with citations in parentheses.

© 2022 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology426

Emerging Topics in Life Sciences (2022) 6 423–433
https://doi.org/10.1042/ETLS20220015

D
ow

nloaded from
 http://portlandpress.com

/em
ergtoplifesci/article-pdf/6/4/423/940112/etls-2022-0015c.pdf by D

anm
arks Tekniske U

niversitet user on 31 July 2024



Nanoplastics have been shown to enter plants primarily via the root tips [57–61], and can be transported to
the ariel parts of the plant [62,63]. The factors influencing uptake and the subsequent transport mechanisms
are not fully assessed and quantitative data are limited, which are required to evaluate wider environmental
impacts and potential risk to human health from crops. These studies have mainly used polystyrene (PS) nano-
plastics and evidence a range of effects; for example, significant reductions in growth (roots and stems) and
development (germination success) of mung beans [63], wheat [64], corn [65] and cress [66] following acute
exposure to nano-PS. Conversely, other studies report no observed effect of PS exposure on the germination
success for wheat [59], or on the growth or development of radish [65], which may be explained by methodo-
logical differences (exposure concentrations and duration) between studies.
Exposure to PLA microplastics (0.1% w/w) caused significant effects on the development and growth of per-

ennial ryegrass, where fewer seeds geminated and root length was supressed compared with control groups
[49]. A similar result was demonstrated for rice plants exposed to PBAT-based film fragments, where growth of
the roots and shoots were significantly impaired leading to reduced nitrogen metabolism and photosynthesis
[67]. The root system is essential for plant growth and development due to its role in the uptake of water and
nutrients; roots are sensitive to perturbations [68] which in turn can affect crop productivity. Numerous studies
have evidenced that microplastics (both conventional and biodegradable) have significant impacts on plant
growth, development and reproduction, and suggest that the effects may be more pronounced for biodegradable
polymers compared with PE [49,69,70], however further work is required to more comprehensively
evaluate this.
As with conventional plastic products, those made from biodegradable plastics also contain a range of chem-

ical additives such as flame retardants, stabilisers, and colourants, used to enhance their functionality or confer
desirable properties. Non-targeted chemical screening of biodegradable plastics (including PLA, PHA, PBAT
and starch and cellulose based materials) indicated that the materials broadly contained a similar number of
chemicals as conventional polymers [71–73] and induced similar toxicity in Allivibrio fischeri [71]. Other
studies have also attributed the toxicity of biodegradable and conventional polymers on the development of
cress seedlings [74] and on the suppression of reproduction in the solitary ascidian Microcosmus exasperates
[75], to the chemicals present within them. Both of the aforementioned studies found no significant differences
between materials (i.e. conventional or biodegradable) indicating that biodegradable plastics present a similar
hazard as conventional plastics to these organisms. However, a wider view is needed to evaluate the ecotoxico-
logical implications of biodegradable plastics on a range of species.

Impacts on ecosystem functioning
The individual and population effects of plastic pollution can cause implications on community structure and
ecosystem processes such as bioturbation, decomposition, primary production and carbon and nitrogen cycling
[50,77–81], which could ultimately induce a reduction of ecosystem functions and services. Despite the number
of studies assessing the impact of biodegradable plastics on ecosystems being low compared with conventional
plastics, there is increasing evidence of the potential effects that biodegradable plastics have at ecosystem scale.
Microparticles of biodegradable (PLA) and conventional plastics (PE and acrylic and polyamide clothing

fibres) caused reduced growth rates and bioturbation activity of earthworms (Aporrectodea rosea) independent
of the polymer type [49]. Marine worms, such as lugworms (Arenicola marina), have also been shown to have
reduced feeding activity and hence, a decrease in the volume of sediment overturned when exposed to different
concentrations or types of microplastics (i.e. biodegradable (PLA) or conventional (PE and PVC)) [80]. Similar
trends were reported for conventional plastics for both marine [44,82,83] and terrestrial species [51–53]. The
oxygenation of the sediment/soil and recycling of organic matter exert control over ecosystem services such as
nutrient cycling and primary productivity [84]. Thus, alterations to the behaviour of these invertebrates due to
exposure to microplastic implies reductions in nutrient availability and sediment/soil quality and stability,
which have consequences on primary producers and microbial communities.
Microplastic pollution can indirectly influence the performance of primary producers via the control of lim-

iting inorganic nutrient from sediments [79]. Green et al. [80] suggested that limited inorganic nutrient avail-
ability triggered a reduction in biomass of microalgae within the surface of marine sediments, which was
caused by the suppression of lugworm burrowing activity as a result of exposure to biodegradable and conven-
tional microplastics. Laboratory mesocosms illustrated reduced cyanobacteria biomass as a consequence of the
reduction in ammonium in sediment pore water, which was indirectly induced through the exposure of oysters
and mussels to PLA and HDPE microplastics [79]. Photosynthetic primary producers can be directly impacted
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by biodegradable and conventional polymers, causing a reduction in chlorophyll content and photosynthetic
inhibition in terrestrial [49], marine [79,80] and freshwater [85–87] species. A decrease in chlorophyll contents
in primary producers could suggest reduced photosynthetic efficiency [88], hence reduced primary production
of the system; with consequences for grazing invertebrate species.
Decreases in the biomass of primary producers may have cascading effects, where fewer resources are avail-

able for higher trophic levels [78]. Several studies document reduced rates of leaf litter decomposition by
macroinvertebrates in streams due to altered aquatic fungal and microbial communities after being exposed to
conventional nanoplastics [81,89,90]. While there are no records on how biodegradable plastics may affect leaf
litter decomposition, we could expect similar effects to conventional plastics due to the similarity of the eco-
toxicological effect that both types of plastics have at the individual level. However, it is important to note that
while biodegradable plastics are not persistent by design, they require specific conditions for biodegradation to
occur (e.g. PLA requires industrial composting conditions (62 ± 4°C, >60% relative humidity) [9]. Whether
ecosystem-level effects will have time to manifest at environmentally realistic (transient) concentrations is less
clear, and uncertain for the degradation products of those plastics (see section 2.4).

Impacts of exposure to chemical degradation products
From the viewpoint of the ecotoxicology, there is clear relationship between the bioenergetics of organisms and
population level events [91]. Thus, also their ability to deliver ecosystem services and functions (see sections
2.1–2.3). In essence, an organism spends its daily energy on physiological maintenance (i.e. keeping tissues
healthy), growth, reproduction, and/or locomotion. To survive in the long term, energy intake usually from
food (assimilation after the cost of digestion/absorption) should slightly exceed energy expenditure. Ideally,
wild animals will have a good metabolic reserve (aerobic metabolic scope) to deal with stressful situations, such
as having the necessary energy and locomotor ability for evading predators [92]. During chemical exposures,
the energy budget can be compromised and there may be a trade-off to meet the cost of toxicity and tissue
repair to enable survival. For sessile organisms, such as marine mussels, there may be a reduction in growth to
meet the cost of chemical exposure [93]. For active animals, such as a predatory rainbow trout, some two-thirds
of its daily energy budget may be spent on locomotion (i.e. foraging and other behaviours), and swimming
speed distributions are shifted to low speeds in order to meet the energetic cost of tissue repair (e.g. copper,
[94]). The consequences of bioenergetics events for ecosystem functions could be substantial. For example, the
disruption of prey-predator interactions in food webs or the social hierarchy of the animals [95], and even the
loss of an ecosystem service. For instance, damage to the skeletal muscle of earthworms to prevent locomotion
(e.g. carbon nanoparticles, [96]), would ultimately impact the ecosystem service of soil turnover. However, it is
not yet clear if the organic chemicals that are the degradation products of biodegradable plastics will affect the
bioenergetics of organisms and subsequently the ecosystem functions they provide.
For biodegradable polymers such as PBAT and PLA, the organic chemicals released during either their

chemical hydrolysis in the environment or microbial degradation are now being reported [97,98]. For PLA, the
main degradation product is lactic acid. According to the European Chemicals Agency (ECHA) database [99]
lactic acid is also identified as a ‘biocidal active substance.’ Lactic acid is a substrate for fermentation in
microbes. However, ATP production by fermentation is well-known to be much less efficient than aerobic
metabolism, and bioenergetic consequences of excess lactic acid in the environment could include impaired
efficiency of energy production in some microbes, with consequent changes in microbial biodiversity in the
biofilms in the ecosystem. However, there are also specialist microbes that can routinely use lactic acid as a sub-
strate. Lactic acid bacteria (order: Lactobacillales) are widely founds in ecosystems with important roles in soil-
plant interactions, etc., [100] and lactic acid will promote their growth. These organisms subsequently produce
a range of organic acids that are biocides especially to fungi and other microbes [101]. Thus, the potential for
PLA to alter the biodiversity and functions of microbial biofilms is a concern. Ingestion of PLA also effects the
avoidance behaviour of earthworms [102], but effects on gut microbiomes are not yet reported.
Crucially, some biodegradable plastics will result in degradation products that have some toxicity. For

example, the biodegradation of PBAT results in the release of terephthalic acid (TPA) [98], which has an acute
oral toxicity to rodents (LD50) of ∼5000 mg/kg [103]. Terephthalic acid may impair the germination of plant
seedling [104] and for esters of TPA the lethal toxicity for Daphnia magna is ∼0.4 mg/l [105], and so there are
ecological concerns regarding this metabolite of PBAT. However, the research on the degradation products
released from biodegradable plastics in ecological scenarios is still in early days, and in order to address the
environmental risks, a wider view is needed. This includes the types of degradation products, measured
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environmental concentrations of those organic chemicals, as well as a range of toxicity data from different
organisms to create species sensitivity distributions that may inform on biodiversity concerns. If the concentra-
tions and identity of the degradation products can be established, then it may be possible to use existing toxi-
cology databases to obtain information on hazards to organisms and bioaccumulation potential. However,
mesocosm experiments will be needed for more complex aspects of fate and effects in food webs, and ultim-
ately field studies with ecological surveys to identify ecosystem-level effects.

Conclusion
While biodegradable plastics are sometimes perceived as an ‘environmentally-friendly’ alternative to conven-
tional plastics [106,107], evidence shows that they have the capacity to exert similar toxic effects on animals
and plants as conventional plastics [48,73,80]. Individual-level effects may become amplified with levels of bio-
logical organisation, i.e. a reduction in an individual’s reproductive rate [48] or particular behaviours such as
bioturbation [80] can have ramifications on the population and on ecosystem functioning. Microbial biodegrad-
ation may limit the long-term environmental persistence of biodegradable plastics and consequently the hazard
posed to other organisms; however the rate of degradation is highly variable under natural conditions
[8,16,108]. Microbial biodegradation can make small contributions to changes in nutrient cycling in ecosystems,
however it is not clear how long these changes may persist or the scale of these effects on biogeochemical
cycles. Chemical degradation products may also present hazards, e.g. terephthalic acid as a metabolite of poly-
butylene adipate terephthalate (PBAT), but these have not been evaluated in terms of their environmental con-
centrations or toxicity to a range of organisms. Currently, there is insufficient data to evaluate the hazard posed
by biodegradable plastics, and thus uncertainty would remain high in any risk analysis.

Summary
• Biodegradable plastics induce effects at a range of ecological scales: from individual to

ecosystem-wide impacts.

• Toxic degradation products can arise during biodegradation; however, the effects of these are
not fully evaluated.

• Biodegradable plastics can alter carbon and nitrogen dynamic in soils and sediments, leading
to alterations in microbial community structure and diversity.

• Akin to conventional plastics, biodegradable plastics contain additives which can induce
toxicity.

• Currently, data on the exposure and effects of biodegradable plastics, including degradation
products and co-contaminants, is too sparse to conduct a reliable ecological risk
assessment.
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